欢迎来到天天文库
浏览记录
ID:52715056
大小:627.50 KB
页数:8页
时间:2020-03-29
《考研数学二真题答案解析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2007年考研数学二真题解读一.选择题<本题共10小题,每小题4分,满分40分,在每小题给的四个选项中,只有一项符合题目要求,把所选项前的字母填在题后括号内)(1)当时,与等价的无穷小量是A.0B.1C.D.<3)如图.连续函数在区间上的图形分别是直径为1的上、下半圆周,在区间上图形分别是直径为2的上、下半圆周,设则下列结论正确的是:设函数fA.若存在,则B.若存
2、在,C.若存在,则D.存在,<5)曲线渐近线的条数为设函数在上具有二阶导数,且,令=则下列结论正确的是(D>p1EanqFDPwA.若,则必收敛B.若,则必发散C.若,则必收敛D.若,则必发散<7)二元函数在点<0,0)处可微的一个充分条件是合同,且相似(B>合同,但不相似(C>不合同
3、,但相似(D>既不合同,也不相似二.填空题:11-16小题,每小题4分,共24分,请将答案写在答题纸指定位置上.曲线上对应于的点处的法线斜率为<).设函数,则=.二阶常系数非齐次线性微分方程的通解y=_.设是二元可微函数,,则.8/8设矩阵,则的秩为_1______.三、解答题:17-24小题,共86分.请将解答写在答题纸指定的位置上.解答应写出文字说明、证明过程或演算步骤.DXDiTa9E3d<17)设是区间上单调、可导函数,且满足,其中是的反函数,求.【详解】:设则.则原式可化为:等式两边同时求导
4、得:<18)<本题满分11分)设D是位于曲线下方、轴上方的无界区域.<Ⅰ)求区域D绕轴旋转一周所成旋转体的体积;<Ⅱ)当为何值时,最小?并求此最小值.【详解】:得故即是唯一驻点,也是最小值点,最小值<19)求微分方程满足初始条件的特解.【详解】:设,则代入得:8/8设则即由于故即由或特解为或<20)已知函数具有二阶导数,且=1,函数由方程所确定.设求,.【详解】:两边对求导得得<当故有<本题11分)设函数在上连续,在内具有二阶导数且存在相等的最大值,8/8证明:存在使得.【详解】:证明:设在内某点同时
5、取得最大值,则,此时的c就是所求点.若两个函数取得最大值的点不同则有设故有,由介值定理,在内肯定存在由罗尔定理在区间内分别存在一点=0在区间内再用罗尔定理,即.<22)<本题满分11分)设二元函数计算二重积分其中【详解】:D如图<1)所示,它关于x,y轴对称,对x,y均为偶函数,得,其中是D的第一象限部分.22xyx1212y(1>(2>由于被积函数分块表示,将分成<如图<2)):,且8/8于是.而所以得<本题满分11分)设线性方程组与方程有公共解,求的值及所有公共解.【详解】:因为方程组(1>、(2
6、>有公共解,即由方程组(1>、(2>组成的方程组的解.8/8即矩阵方程组(3>有解的充要条件为.当时,方程组(3>等价于方程组(1>即此时的公共解为方程组(1>的解.解方程组(1>的基础解系为此时的公共解为:RTCrpUDGiT当时,方程组(3>的系数矩阵为此时方程组(3>的解为,即公共解为:(24>设3阶对称矩阵A的特征向量值是A的属于的一个特征向量,记其中为3阶单位矩阵验证是矩阵的特征向量,并求的全部特征值的特征向量;求矩阵.【详解】:<Ⅰ)可以很容易验证,于是于是是矩阵B的特征向量.B的特征值可
7、以由A的特征值以及B与A的关系得到,即,所以B的全部特征值为-2,1,1.前面已经求得为B的属于-2的特征值,而A为实对称矩阵,于是根据B与A的关系可以知道B也是实对称矩阵,于是属于不同的特征值的特征向量正交,设B的属于1的特征向量为,所以有方程如下:5PCzVD7HxA8/8于是求得B的属于1的特征向量为<Ⅱ)令矩阵,则,所以申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。8/8
此文档下载收益归作者所有