排列组合典型题常见解法.ppt

排列组合典型题常见解法.ppt

ID:52651877

大小:886.50 KB

页数:21页

时间:2020-04-12

排列组合典型题常见解法.ppt_第1页
排列组合典型题常见解法.ppt_第2页
排列组合典型题常见解法.ppt_第3页
排列组合典型题常见解法.ppt_第4页
排列组合典型题常见解法.ppt_第5页
资源描述:

《排列组合典型题常见解法.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、解排列组合的常用策略从n个不同元素中,任取m个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.组合的定义:从n个不同元素中,任取m个元素,并成一组,叫做从n个不同元素中取出m个元素的一个组合.3.排列数公式:4.组合数公式:1.排列的定义:排列与组合的区别与联系:与顺序有关的为排列问题,与顺序无关的为组合问题.一.定序问题倍缩法,空位插入法例4.7人排队,其中甲乙丙3人顺序一定共有多少种不同的排法解:(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有种方法,其余的三个位置甲乙

2、丙共有种坐法,则共有种方法1思考:可以先让甲乙丙就坐吗?(插入法)先排甲乙丙三个人,共有1种排法,再把其余4四人依次插入共有方法4*5*6*7练习题期中安排考试科目9门,语文要在数学之前考,有多少种不同的安排顺序?(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:定序问题可以用倍缩法,还可转化为占位插入模型处理二.重排问题求幂法例5.把6名实习生分配到7个车间实习,共有多少种不同的分法解:完成此事共分六步:把

3、第一名实习生分配到车间有种分法.7把第二名实习生分配到车间也有7种分法,依此类推,由分步计数原理共有种不同的排法一般地n不同的元素没有限制地安排在m个位置上的排列数为种nm某8层大楼一楼电梯上来8名乘客,他们到各自的一层下电梯,下电梯的方法()练习题三.排列组合混合问题先选后排法例6.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.解:第一步从5个球中任选2个捆绑一块共有__种方法.再与其他三个球看成四个元素装入4个不同的盒内有_____种方法.根据分步计数原理装球的方法共有__

4、___解决排列组合混合问题,先选后排是最基本的指导思想.练习题一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有________种192四.相同元素隔板法例7.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?解:因为10个名额没有差别,把它们排成一排。相邻名额之间形成9个空隙。在9个空档中选6个位置插隔板,可把名额分成7份,对应地分给7个班级,每一种插板方法对应一种分法共有___________种分法。一班二班三班

5、四班五班六班七班将n个相同的元素分成m份(n,m为正整数),每份至少一个元素,可以用块隔板,插入n个元素排成一排的个空隙中,所有分法数为m-1n-1练习题10个相同的球装5个盒中,每盒至少一个,有多少装法?五.均分问题除法策略例8.6本不同的书平均分成3堆,每堆2本共有多少分法?解:分三步取书得种方法,但这里出现重复计数的现象,不妨记6本书为ABCDEF若第一步取AB,第二步取CD,第三步取EF该分法记为(AB,CD,EF),则中还有(AB,EF,CD),(CD,AB,EF),(CD,EF,AB)(EF,C

6、D,AB),(EF,AB,CD)共有种取法,而这些分法仅是(AB,CD,EF)一种分法,故共有种分法。平均分成的组,不管它们的顺序如何,都是一种情况,所以分组后要一定要除以(n为均分的组数)避免重复计数。1.将13个球队分成3组,一组5个队,其它两组4个队,有多少分法?2.某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______练习题六.多面手问题合理分类法例9.在一次演唱会上共10名演员,其中8人能够唱歌,5人会跳舞,现要演出一个2人唱歌2

7、人伴舞的节目,有多少选派方法?解:10演员中有5人只会唱歌,2人只会跳舞3人为全能演员。以只会唱歌的5人是否选上唱歌人员为标准进行研究只会唱的5人中没有人选上唱歌人员共有____种,只会唱的5人中只有1人选上唱歌人员________种,只会唱的5人中只有2人选上唱歌人员有____种,由分类计数原理共有______________________种。++本题还有如下分类标准:*以3个全能演员是否选上唱歌人员为标准*以3个全能演员是否选上跳舞人员为标准*以只会跳舞的2人是否选上跳舞人员为标准都可经得到正确结果从

8、4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有_______34练习题七.构造模型法例10.马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种?解:把此问题当作一个排队模型在6盏亮灯的5个空隙中插入3个不亮的灯有________种一些不易理解的排列组合题如果能转

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。