2016初中数学一轮复习课时导学案30讲:2016初中数学中考一轮复习第28课--圆的综合导学案.doc

2016初中数学一轮复习课时导学案30讲:2016初中数学中考一轮复习第28课--圆的综合导学案.doc

ID:52557839

大小:576.00 KB

页数:26页

时间:2020-03-28

2016初中数学一轮复习课时导学案30讲:2016初中数学中考一轮复习第28课--圆的综合导学案.doc_第1页
2016初中数学一轮复习课时导学案30讲:2016初中数学中考一轮复习第28课--圆的综合导学案.doc_第2页
2016初中数学一轮复习课时导学案30讲:2016初中数学中考一轮复习第28课--圆的综合导学案.doc_第3页
2016初中数学一轮复习课时导学案30讲:2016初中数学中考一轮复习第28课--圆的综合导学案.doc_第4页
2016初中数学一轮复习课时导学案30讲:2016初中数学中考一轮复习第28课--圆的综合导学案.doc_第5页
资源描述:

《2016初中数学一轮复习课时导学案30讲:2016初中数学中考一轮复习第28课--圆的综合导学案.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、思考与收获2016年初中数学中考一轮复习第28课圆的综合导学案【考点梳理】:1、圆与三角形2、圆与四边形3、圆与函数4、圆与图形变换【思想方法】方程思想,分类讨论【考点一】:圆与三角形【例题赏析】(2015•湖北,第25题10分)如图,AB是⊙O的直径,点C为⊙O上一点,AE和过点C的切线互相垂直,垂足为E,AE交⊙O于点D,直线EC交AB的延长线于点P,连接AC,BC,PB:PC=1:2.(1)求证:AC平分∠BAD;(2)探究线段PB,AB之间的数量关系,并说明理由;(3)若AD=3,求△ABC的面积.考点:圆的综合题.分析:(1)首先连接OC,由PE是⊙O的切线

2、,AE和过点C的切线互相垂直,可证得OC∥AE,又由OA=OC,易证得∠DAC=∠OAC,即可得AC平分∠BAD;(2)由AB是⊙O的直径,PE是切线,可证得∠PCB=∠PAC,即可证得△PCB∽△PAC,然后由相似三角形的对应边成比例与PB:PC=1:2,即可求得答案;(3)首先过点O作OH⊥AD于点H,则AH=AD=,四边形OCEH是矩形,即可得AE=+OC,由OC∥AE,可得△PCO∽△PEA,然后由相似三角形的对应边成比例,求得OC的长,再由△PBC∽△PCA,证得AC=2BC,然后在Rt△ABC中,AC2+BC2=AB2,可得(2BC)2+BC2=52,即可

3、求得BC的长,继而求得答案.思考与收获解答:(1)证明:连接OC,∵PE是⊙O的切线,∴OC⊥PE,∵AE⊥PE,∴OC∥AE,∴∠DAC=∠OCA,∵OA=OC,∴∠OCA=∠OAC,∴∠DAC=∠OAC,∴AC平分∠BAD;(2)线段PB,AB之间的数量关系为:AB=3PB.理由:∵AB是⊙O的直径,∴∠ACB=90°,∴∠BAC+∠ABC=90°,∵OB=OC,∴∠OCB=∠ABC,∵∠PCB+∠OCB=90°,∴∠PCB=∠PAC,∵∠P是公共角,∴△PCB∽△PAC,∴,∴PC2=PB•PA,∵PB:PC=1:2,∴PC=2PB,∴PA=4PB,∴AB=3P

4、B;思考与收获(3)解:过点O作OH⊥AD于点H,则AH=AD=,四边形OCEH是矩形,∴OC=HE,∴AE=+OC,∵OC∥AE,∴△PCO∽△PEA,∴,∵AB=3PB,AB=2OB,∴OB=PB,∴=,∴OC=,∴AB=5,∵△PBC∽△PCA,∴,∴AC=2BC,在Rt△ABC中,AC2+BC2=AB2,∴(2BC)2+BC2=52,∴BC=,∴AC=2,∴S△ABC=AC•BC=5.点评:此题属于圆的综合题,考查了圆周角定理、切线的性质、勾股定理以及相似三角形的判定与性质.注意准确作出辅助线是解此题的关键.思考与收获【考点二】:圆与四边形【例题赏析】(201

5、5•永州,第27题10分)问题探究:(一)新知学习:圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).(二)问题解决:已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M.(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;(3)若直径AB与C

6、D相交成120°角.①当点P运动到的中点P1时(如图二),求MN的长;②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.考点:圆的综合题.专题:探究型.分析:(1)如图一,易证∠PMO+∠PNO=180°,从而可得四边形PMON内接于圆,直径OP=2;(2)如图一,易证四边形PMON是矩形,则有MN=OP=2,问题得以解决;(3)①如图二,根据等弧所对的圆心角相等可得∠COP1=∠BOP1=60°,根据圆内接四边形的对角互补可得∠MP1N=60°.根据角平分线的性

7、质可得P1M=P1N,从而得到△P1MN是等边三角形,则有MN=P1M.然后在Rt△P1MO运用三角函数就可解决问题;②设四边形PMON的外接圆为⊙O′,连接NO′并延长,交⊙O′于点Q,连接QM,如图三,根据圆周角定理可得∠QMN=90°,∠MQN=∠MPN=60°,在Rt△QMN中运用三角函数可得:MN=QN•sin∠MQN,从而可得MN=OP•sin∠MQN,由此即可解决问题;思考与收获(4)由(3)②中已得结论MN=OP•sin∠MQN可知,当∠MQN=90°时,MN最大,问题得以解决.解答:(1)如图一,∵PM⊥OC,PN⊥OB,∴∠PMO

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。