欢迎来到天天文库
浏览记录
ID:52446755
大小:1.37 MB
页数:21页
时间:2020-04-07
《初中数学教学课件:22.3实际问题与二次函数第2课时(人教版九年级上).ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、22.3实际问题与二次函数第2课时1.会建立直角坐标系解决实际问题;2.会解决与桥洞水面宽度有关的类似问题.(1)磁盘最内磁道的半径为rmm,其上每0.015mm的弧长为一个存储单元,这条磁道有多少个存储单元?(2)磁盘上各磁道之间的宽度必须不小于0.3mm,磁盘的外圆周不是磁道,这张磁盘最多有多少条磁道?(3)如果各磁道的存储单元数目与最内磁道相同,最内磁道的半径r是多少时,磁盘的存储量最大?计算机把数据存储在磁盘上,磁盘是带有磁性物质的圆盘,磁盘上有一些同心圆轨道,叫做磁道,现有一张半径为45mm的磁盘,你能说出r为多少时y最大吗?分析(1)最
2、内磁道的周长为2πr㎜,它上面的存储单元的个数不超过(2)由于磁盘上磁道之间的宽度必须不小于0.3㎜,磁盘的外圆周不是磁道,各磁道分布在磁盘上内径为rmm外径为45mm的圆环区域,所以这张磁盘最多有条磁道.(3)当各磁道的存储单元数目与最内磁道相同时,磁盘每面存储量=每条磁道的存储单元数×磁道数.(03、)谁最合适yyyyooooxxxx解法一:如图所示以抛物线的顶点为原点,以抛物线的对称轴为y轴,建立平面直角坐标系.∴可设这条抛物线所表示的二次函数的解析式为:当拱桥离水面2m时,水面宽4m即抛物线过点(2,-2)∴这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-3,这时有:∴当水面下降1m时,水面宽度增加了解法二:如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.∴可设这条抛物线所表示的二次函数的解析式为:此时,抛物线的顶点为(0,2)当拱桥离水面2m时,水面宽4m即:抛物线过点(2,4、0)∴这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-1,这时有:∴当水面下降1m时,水面宽度增加了解法三:如图所示,以抛物线和水面的两个交点的连线为x轴,以其中的一个交点(如左边的点)为原点,建立平面直角坐标系.∴可设这条抛物线所表示的二次函数的解析式为:∵抛物线过点(0,0)∴这条抛物线所表示的二次函数为:此时,抛物线的顶点为(2,2)当水面下降1m时,水面的纵坐标为y=-1,这时有:∴当水面下降1m时,水面宽度增加了∴这时水面的宽度为:1.理解问题;回顾上一节“最大利润”和本节“桥梁建筑”解决问题的过程,你能总结一下解决此5、类问题的基本思路吗?与同伴交流.2.分析问题中的变量和常量,以及它们之间的关系3.用数学的方式表示出它们之间的关系;4.做数学求解;5.检验结果的合理性“二次函数应用”的思路1.(江津中考)如图,等腰Rt△ABC(∠ACB=90º)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A2.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为6、,则水柱的最大高度是().A.2B.4 C.6 D.2+3.已知二次函数 的图象如图所示,有下列5个结论:①abc>0;②b0;④2c<3b;⑤a+b>m(am+b)(m为不等于1的实数).其中正确的结论有()A.2个B.3个C.4个D.5个CB4.某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m.这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.解析:如图,以AB所在的直线为x7、轴,以AB的垂直平分线为y轴,建立平面直角坐标系.∵AB=4∴A(-2,0)B(2,0)∵OC=4.4∴C(0,4.4)设抛物线所表示的二次函数为∵抛物线过A(-2,0)∴抛物线所表示的二次函数为∴汽车能顺利经过大门.5.(南充中考)某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数图象如图:(1)当电价为600元千度时,工厂消耗每千度电产生利润是多少?(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=8、10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大
3、)谁最合适yyyyooooxxxx解法一:如图所示以抛物线的顶点为原点,以抛物线的对称轴为y轴,建立平面直角坐标系.∴可设这条抛物线所表示的二次函数的解析式为:当拱桥离水面2m时,水面宽4m即抛物线过点(2,-2)∴这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-3,这时有:∴当水面下降1m时,水面宽度增加了解法二:如图所示,以抛物线和水面的两个交点的连线为x轴,以抛物线的对称轴为y轴,建立平面直角坐标系.∴可设这条抛物线所表示的二次函数的解析式为:此时,抛物线的顶点为(0,2)当拱桥离水面2m时,水面宽4m即:抛物线过点(2,
4、0)∴这条抛物线所表示的二次函数为:当水面下降1m时,水面的纵坐标为y=-1,这时有:∴当水面下降1m时,水面宽度增加了解法三:如图所示,以抛物线和水面的两个交点的连线为x轴,以其中的一个交点(如左边的点)为原点,建立平面直角坐标系.∴可设这条抛物线所表示的二次函数的解析式为:∵抛物线过点(0,0)∴这条抛物线所表示的二次函数为:此时,抛物线的顶点为(2,2)当水面下降1m时,水面的纵坐标为y=-1,这时有:∴当水面下降1m时,水面宽度增加了∴这时水面的宽度为:1.理解问题;回顾上一节“最大利润”和本节“桥梁建筑”解决问题的过程,你能总结一下解决此
5、类问题的基本思路吗?与同伴交流.2.分析问题中的变量和常量,以及它们之间的关系3.用数学的方式表示出它们之间的关系;4.做数学求解;5.检验结果的合理性“二次函数应用”的思路1.(江津中考)如图,等腰Rt△ABC(∠ACB=90º)的直角边与正方形DEFG的边长均为2,且AC与DE在同一直线上,开始时点C与点D重合,让△ABC沿这条直线向右平移,直到点A与点E重合为止.设CD的长为x,△ABC与正方形DEFG重合部分(图中阴影部分)的面积为y,则y与x之间的函数关系的图象大致是()A2.如图所示,阳光中学教学楼前喷水池喷出的抛物线形水柱,其解析式为
6、,则水柱的最大高度是().A.2B.4 C.6 D.2+3.已知二次函数 的图象如图所示,有下列5个结论:①abc>0;②b0;④2c<3b;⑤a+b>m(am+b)(m为不等于1的实数).其中正确的结论有()A.2个B.3个C.4个D.5个CB4.某工厂大门是一抛物线形的水泥建筑物,大门底部宽AB=4m,顶部C离地面的高度为4.4m,现有载满货物的汽车欲通过大门,货物顶部距地面2.7m,装货宽度为2.4m.这辆汽车能否顺利通过大门?若能,请你通过计算加以说明;若不能,请简要说明理由.解析:如图,以AB所在的直线为x
7、轴,以AB的垂直平分线为y轴,建立平面直角坐标系.∵AB=4∴A(-2,0)B(2,0)∵OC=4.4∴C(0,4.4)设抛物线所表示的二次函数为∵抛物线过A(-2,0)∴抛物线所表示的二次函数为∴汽车能顺利经过大门.5.(南充中考)某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(元/千度)与电价x(元/千度)的函数图象如图:(1)当电价为600元千度时,工厂消耗每千度电产生利润是多少?(2)为了实现节能减排目标,有关部门规定,该厂电价x(元/千度)与每天用电量m(千度)的函数关系为x=
8、10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少度电?工厂每天消耗电产生利润最大
此文档下载收益归作者所有