欢迎来到天天文库
浏览记录
ID:52408632
大小:1.78 MB
页数:3页
时间:2020-03-27
《大惯性对象控制器参数寻优的目标函数研究.pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、大惯性对象控制器参数寻优的目标函数研究马平。等大惯性对象控制器参数寻优的目标函数研究ResearchontheObjectiVeFunctionofOptimaIParametersforLargelnertiaObjectsControIIer马平馐涪洲周穹华(华北电力大学控制与计算机工程学院,河北保定071003)摘要:传统目标函数在大惯性被控对象PⅢ控制器参数寻优过程中存在超调量过大、调节时间过长且对不同对象缺乏灵活性等问题。基于最优控制理论,并结合Madab环境中对其参数进行不同目标函数的遗传算法寻优的大量仿真试验,提出了一种适用于大惯
2、性对象控制器参数寻优的变权综合型的目标函数。通过仿真试验,证明了变权综合型的目标函数具有比较好的灵活性,且其寻得的参数明显优于传统目标函数。关键词:大惯性对象参数寻优遗传算法目标函数仿真中图分类号:11P273.1文献标志码:AAk岫lct:111eoptimi髓d∞“pa聊nete鸺forPIDc伽咖Ⅱeru∞dforlargeineltiacon廿DⅡerobjectby“面Ilg嘣itionaIobjecdve矗mc由nfea.tums既c嘲ive0v础oot。loIlg靶ttliJlgdme柚d1ackofnex蛐tyfordi腩rem
3、objects.T0oVe咒ometIle∞d咖rits。basedon叩dmalcon臼dtlleoTie8。柚dc0幽m8w油many8im山60nexperimen协ofo—Ini8iIIgpamr聃te鹅bygene6c蛔tllmwidldi如他mobjectivefh眦60璐蚰derMatllIbenvir咖ent-tllevariableweightsyn山esizillgobjectivefIl耶出onth丑ti88IIitablef曲l&rgeinemaobjectto哪瞳imi弛p£Iramte糟ofcon酬一kri8pmp∞
4、ed.Thesimlll撕onexpe曲ent8verifytII砒suchobjectivefuIIcdondfe墙‰rfle】【ibility,andtllep舢ete玛itoⅫmaremom8uperiort0山D跎如mtraditi伽Ialobjec6vefIlIletio他.K叼哪ords:【丑rgeineniaobject0ptim8lp8mmete碍Genetic蛔thmO引言随着科学技术的发展、自动化程度的提升和生产规模的扩大,被控对象通常呈现出大延迟、大惯性和多扰动的特性。这种被控对象对当前施加的控制量需要经过一段时间后才会在
5、对象输出中反映出来。因此,在调节过程中时常有动态偏差大、调节时间长等问题出现,这些问题往往导致生产过程动态品质的下降¨qJ。面对复杂的被控对象和高要求的产品质量旧1,仅凭人工经验或传统的目标函数将无法使控制系统达到最佳的控制效果。本文在传统目标函数的基础上,提出一种适用于大惯性难控对象的变权综合型目标函数。仿真结果证明,改进型目标函数所寻的PID控制器参数的控制效果明显优于传统目标函数。1传统目标函数1.1单项性能指标型单项性能指标型目标函数是以系统的输出响应特修改稿收到日期:20lO一08—24。第一作者马平,女。1961年生,1990年毕业
6、于华北电力大学热能工程专业,获硕士学位,教授;主要从事智能控制理论度其与应用方面的研究。《自动化仪表》第32卷第7期加11年7月0bjectiVefhncti∞SiInI血垃∞性为指标的M‘5o,主要有衰减率、超调量、残余偏差和调节时间等。一般工业控制系统往往有多项性能指标的要求,因此,可以根据不同的需求来选取这些指标。但单一的性能指标不能保证控制效果达到最优,所以需要通过采用多个单项性能指标进行变权综合的方法来解决。变权综合是对常权综合的一种改进∞o,其基本思想是在一个组评价参数的综合评价中,不采用常权加权平均的方法求综合评价结果,而是对一组
7、评价参数的某些部分进行“惩罚”或“激励”,即减小权重或加大权重,并在此基础上进行综合评价,从而使评价结果更趋合理。1.2误差积分指标型误差积分指标型目标函数是系统在过渡过程中被调量偏离其新稳态值的误差沿时间轴的积分。无论是误差幅度大或是时间拖长都会使误差增大,因此,它是一类综合指标,其值越小越好。误差积分有多种形式"],常用的有误差积分(IE)、绝对误差积分(IAE)、平方误差积分(ISE)以及时间与绝对误差乘积积分(rrAE)4种。它们的积分公式如下:41大惯性对象控制器参数寻优的目标函数研究马平。等误差积分:,∞腰=Je(f)出(1)J0绝
8、对误差积分:·∞伪E=JIe(£)I出(2)J0平方误差积分:巧E=Ie2(£)dt(3)J0时间与绝对误差乘积积分:^∞,附E=J£Je(t)Id£
此文档下载收益归作者所有