欢迎来到天天文库
浏览记录
ID:52333654
大小:1.67 MB
页数:32页
时间:2020-04-04
《高中数学 几何概型课件 新人教A版必修3.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、几何概型教学目标:1、学生能够正确区分几何概型及古典概型两者的区别;2、学生初步掌握并运用几何概型解决有关概率的基本问题;教学重点与难点:重点:几何概型的特点及其几何概型学习的思维过程;难点:几何概型的判断及其概率公式的选择3、掌握几何概型的概率公式:复习提问:1、古典概型的两个特点:(1)试验中所有可能出现的基本事件只有有限个.(2)每个基本事件出现的可能性相等.2、计算古典概型的公式:那么对于有无限多个试验结果的情况相应的概率应如果求呢?创设情境:2、往一个方格中投一个石子,石子可能落在方格中的任何一点
2、……这些试验可能出现的结果都是无限多个。1、例如一个人到单位的时间可能是8:00至9:00之间的任何一个时刻;问题1:下图是卧室和书房地板的示意图,图中每一块方砖除颜色外完全相同,甲壳虫分别在卧室和书房中自由地飞来飞去,并随意停留在某块方砖上,问卧室在哪个房间里,甲壳虫停留在黑砖上的概率大?卧室书房问题2:图中有两个转盘,甲乙两人玩转盘游戏,规定当指针指向黄色区域时,甲获胜,否则乙获胜。哪种情况下甲容易获胜?(1)(2)⑴甲获胜的概率与所在扇形区域的圆弧的长度有关,而与区域的位置无关。在转转盘时,指针指向圆
3、弧上哪一点都是等可能的。不管这些区域是相邻,还是不相邻,甲获胜的概率是不变的。⑵甲获胜的概率与扇形区域所占比例大小有关,与图形的大小无关。问题:甲获胜的概率与区域的位置有关吗?与图形的大小有关吗?甲获胜的可能性是由什么决定的?(1)(2)(3)几何概型的定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.几何概型的特点:(1)试验中所有可能出现的结果(基本事件)有无限多个.(2)每个基本事件出现的可能性相等.在几何概型中,事件A的概率的
4、计算公式如下:几何概型的特点:试验中所有可能出现的基本事件有无限个每个基本事件出现的可能性相等古典概型与几何概型的区别相同:两者基本事件发生的可能性都是相等的;不同:古典概型要求基本事件有有限个,几何概型要求基本事件有无限多个。联系:古典概型可以看成是几何概型的特例。古典概型的特点:a)试验中所有可能出现的基本事件只有有限个.b)每个基本事件出现的可能性相等.判断下列试验中事件A发生的概度是古典概型,还是几何概型。(1)抛掷两颗骰子,求出现两个“4点”的概率;(2)有一个转盘,甲乙两人玩转盘游戏,规定当指针
5、指向B区域时,甲获胜,否则乙获胜,求甲获胜的概率分析:本题考查的几何概型与古典概型的特点,古典概型具有有限性和等可能性。而几何概型则是在试验中出现无限多个结果,且与事件的几何尺度有关。解:(1)抛掷两颗骰子,出现的可能结果有6×6=36种,且它们都是等可能的,因此属于古典概型;(2)游戏中指针指向B区域时有无限多个结果,而且不难发现“指针落在阴影部分”,概率可以用阴影部分的面积与总面积的比来衡量,即与几何尺度有关,因此属于几何概型.探究规律:几何概型公式(1):例1:某人午觉醒来,发现表停了,他打开收音机,
6、想听电台报时,求他等待的时间不多于10分钟的概率.(假设只有正点报时)分析:假设他在0~60分钟之间任何一个时刻打开收音机是等可能的,但0~60之间有无穷个时刻,不能用古典概型的公式计算随机事件发生的概率。我们可以通过随机模拟的方法得到随机事件发生的概率的近似值,也可以通过几何概型的求概率公式得到事件发生的概率。因为电台每隔1小时报时一次,他在0~60之间任何一个时刻打开收音机是等可能的,所以他在哪个时间段打开收音机的概率只与该时间段的长度有关,而与该时间段的位置无关,这符合几何概型的条件。解:设A={等待
7、的时间不多于10分钟},事件A恰好是打开收音机的时刻位于[50,60]时间段内,因此由几何概型的求概率公式得P(A)=(60-50)/60=1/6“等待报时的时间不超过10分钟”的概率为1/6探究规律:几何概型公式(2):例2.一海豚在水池中自由游弋,水池为长30m,宽20m的长方形,求此刻海豚嘴尖离岸边不超过2m的概率.解:对于几何概型,关键是要构造出随机事件对应的几何图形,利用图形的几何度量来求随机事件的概率.如图,区域Ω是长30m、宽20m的长方形.图中阴影部分表示事件A:“海豚嘴尖离岸边不超过2m”
8、,问题可以理解为求海豚嘴尖出现在图中阴影部分的概率.由于区域Ω的面积为30×20=600(m2),阴影A的面积为30×20-26×16=184(m2).∴P(A)=几何概型公式(3):探究规律:例3:有一杯1升的水,其中含有1个细菌,用一个小杯从这杯水中取出0.1升,求小杯水中含有这个细菌的概率.分析:细菌在这升水中的分布可以看作是随机的,取得0.1升水可作为事件的区域。解:取出0.1升中“含有这个细菌”这一事件
此文档下载收益归作者所有