欢迎来到天天文库
浏览记录
ID:52319743
大小:602.50 KB
页数:11页
时间:2020-03-26
《混合高斯模型(Mixtures-of-Gaussians)和EM算法.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、混合高斯模型(MixturesofGaussians)和EM算法 这篇讨论使用期望最大化算法(Expectation-Maximization)来进行密度估计(densityestimation)。 与k-means一样,给定的训练样本是,我们将隐含类别标签用表示。与k-means的硬指定不同,我们首先认为是满足一定的概率分布的,这里我们认为满足多项式分布,,其中,有k个值{1,…,k}可以选取。而且我们认为在给定后,满足多值高斯分布,即。由此可以得到联合分布。 整个模型简
2、单描述为对于每个样例,我们先从k个类别中按多项式分布抽取一个,然后根据所对应的k个多值高斯分布中的一个生成样例,。整个过程称作混合高斯模型。注意的是这里的仍然是隐含随机变量。模型中还有三个变量和。最大似然估计为。对数化后如下: 这个式子的最大值是不能通过前面使用的求导数为0的方法解决的,因为求的结果不是closeform。但是假设我们知道了每个样例的,那么上式可以简化为: 这时候我们再来对和进行求导得到: 就是样本类别中的比率。是类别为j的样
3、本特征均值,是类别为j的样例的特征的协方差矩阵。实际上,当知道后,最大似然估计就近似于高斯判别分析模型(Gaussiandiscriminantanalysismodel)了。所不同的是GDA中类别y是伯努利分布,而这里的z是多项式分布,还有这里的每个样例都有不同的协方差矩阵,而GDA中认为只有一个。 之前我们是假设给定了,实际上是不知道的。那么怎么办呢?考虑之前提到的EM的思想,第一步是猜测隐含类别变量z,第二步是更新其他参数,以获得最大的最大似然估计。用到这里就是:循环下面步骤,直到收
4、敛:{ (E步)对于每一个i和j,计算 (M步),更新参数: } 在E步中,我们将其他参数看作常量,计算的后验概率,也就是估计隐含类别变量。估计好后,利用上面的公式重新计算其他参数,计算好后发现最大化最大似然估计时,值又不对了,需要重新计算,周而复始,直至收敛。 的具体计算公式如下: 这个式子利用了贝叶斯公式。 这里我们使用代替了前面的,由简单的0/1值变成了概率值。
5、 对比K-means可以发现,这里使用了“软”指定,为每个样例分配的类别是有一定的概率的,同时计算量也变大了,每个样例i都要计算属于每一个类别j的概率。与K-means相同的是,结果仍然是局部最优解。对其他参数取不同的初始值进行多次计算不失为一种好方法。 虽然之前再K-means中定性描述了EM的收敛性,仍然没有定量地给出,还有一般化EM的推导过程仍然没有给出。下一篇着重介绍这些内容。(EM算法)TheEMAlgorithm EM是我一直想深入学习的算法之一,第一次听说是在NLP课
6、中的HMM那一节,为了解决HMM的参数估计问题,使用了EM算法。在之后的MT中的词对齐中也用到了。在Mitchell的书中也提到EM可以用于贝叶斯网络中。下面主要介绍EM的整个推导过程。1.Jensen不等式 回顾优化理论中的一些概念。设f是定义域为实数的函数,如果对于所有的实数x,,那么f是凸函数。当x是向量时,如果其hessian矩阵H是半正定的(),那么f是凸函数。如果或者,那么称f是严格凸函数。 Jensen不等式表述如下: 如果f是凸函数,X是随机变量,那么
7、 特别地,如果f是严格凸函数,那么当且仅当,也就是说X是常量。 这里我们将简写为。 如果用图表示会很清晰: 图中,实线f是凸函数,X是随机变量,有0.5的概率是a,有0.5的概率是b。(就像掷硬币一样)。X的期望值就是a和b的中值了,图中可以看到成立。 当f是(严格)凹函数当且仅当-f是(严格)凸函数。 Jensen不等式应用于凹函数时,不等号方向反向,也就是。2.EM算法 给定的训练样本是,样例间独立,我们想找到每个样例隐含的
8、类别z,能使得p(x,z)最大。p(x,z)的最大似然估计如下: 第一步是对极大似然取对数,第二步是对每个样例的每个可能类别z求联合分布概率和。但是直接求一般比较困难,因为有隐藏变量z存在,但是一般确定了z后,求解就容易了。 EM是一种解决存在隐含变量优化问题的有效方法。竟然不能直接最大化,我们可以不断地建立的下界(E步),然后优化下界(M步)。这句话比较抽象,看下面的。 对于每一个样例i,让表示该样例隐含变量z的某种分布,满足的条件是。(如果z是
此文档下载收益归作者所有