广东省珠海市金海岸中学八年级数学《18.1.1勾股定理 》课件 人教新课标版.ppt

广东省珠海市金海岸中学八年级数学《18.1.1勾股定理 》课件 人教新课标版.ppt

ID:52203082

大小:1.70 MB

页数:36页

时间:2020-04-02

广东省珠海市金海岸中学八年级数学《18.1.1勾股定理 》课件 人教新课标版.ppt_第1页
广东省珠海市金海岸中学八年级数学《18.1.1勾股定理 》课件 人教新课标版.ppt_第2页
广东省珠海市金海岸中学八年级数学《18.1.1勾股定理 》课件 人教新课标版.ppt_第3页
广东省珠海市金海岸中学八年级数学《18.1.1勾股定理 》课件 人教新课标版.ppt_第4页
广东省珠海市金海岸中学八年级数学《18.1.1勾股定理 》课件 人教新课标版.ppt_第5页
资源描述:

《广东省珠海市金海岸中学八年级数学《18.1.1勾股定理 》课件 人教新课标版.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、18.1.1勾股定理2002年国际数学家大会会标弦图这个图形里到底蕴涵了什么样博大精深的知识呢?它标志着我国古代数学的成就!毕达哥拉斯(公元前572----前492年),古希腊著名的哲学家、数学家、天文学家。SA+SB=SCABCBAC图甲A的面积B的面积C的面积448SA+SB=SCC图甲1.观察图甲,小方格的边长为1.⑴正方形A、B、C的面积各为多少?⑵正方形A、B、C的面积有什么关系?毕达哥拉斯(公元前572----前492年),古希腊著名的哲学家、数学家、天文学家。A、B、C的面积有什么关系?SA+SB=SCABC对于等腰直角三角形有这样的性质:两直边的平方和等于斜边的平方ABC图乙

2、2.观察图乙,小方格的边长为1.⑴正方形A、B、C的面积各为多少?91625SA+SB=SC⑵正方形A、B、C的面积有什么关系?448ABC图甲图甲图乙A的面积B的面积C的面积CSA+SB=SCAB图乙2.观察图乙,小方格的边长为1.91625SA+SB=SC⑵正方形A、B、C的面积有什么关系?448ABC图甲图甲图乙A的面积B的面积C的面积abcabcCSA+SB=SCABCC图乙SA+SB=SCSA+SB=SC图甲abcabc.猜想a、b、c之间的关系?a2+b2=c2命题1:如果直角三角形的两直角边长分别为a、b,斜边长为c,那么a2+b2=c2caba2+b2=c2aaaabbbbc

3、ccc用拼图法证明.a、b、c之间的关系a2+b2=c2∵S大正方形=(a+b)2=a2+b2+2abS大正方形=4S直角三角形+S小正方形=4·ab+c2=c2+2ab∴a2+b2+2ab=c2+2ab∴a2+b2=c2a2+b2+2ab证法一:abcS大正方形=c2S小正方形=(b-a)2S大正方形=4·S三角形+S小正方形弦图现在我们一起来探索“弦图”的奥妙吧!证法二:黄实朱实朱实朱实朱实baacab经过证明被确认正确的命题叫做定理.cba用赵爽弦图证明勾股定理=ba1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法。1881年,伽菲尔德就任美国第二十任总

4、统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。美国总统的证明证法三:aabbcc伽菲尔德证法:∴a2+b2=c2勾股定理(gou-gu法则)如果直角三角形两直角边分别为a、b,斜边为c,那么即直角三角形两直角边的平方和等于斜边的平方。abc勾股弦在西方又称毕达哥拉斯定理耶!abc两千多年前,古希腊有个哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯年希腊曾经发行了一枚纪念票。定理。为了纪念毕达哥拉斯学派,1955勾股世界国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多

5、年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前,国家之一。早在三千多年前两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。勾股史话商高定理:商高是公元前      十一世纪的中国人。当时中国的朝代是西周,    是奴隶社会时期。在中国

6、古代大约是战国时期西汉的数学著作《周髀算经》中记录着商高同周公的一段对话。商高说:“…故折矩,勾广三,股修四,经隅五。”商高那段话的意思就是说:当直角三角形的两条直角边分别为3(短边)和4(长边)时,径隅(就是弦)则为5。以后人们就简单地把这个事实说成“勾三股四弦五”,所以在我国人们就把这个定理叫作“商高定理”。商高定理就是勾股定理哦!毕达哥拉斯定理:毕达哥拉斯“勾股定理”在国外,尤其在西方被称为“毕达哥拉斯定理”或“百牛定理”.相传这个定理是公元前500多年时古希腊数学家毕达哥拉斯首先发现的。他发现勾股定理后高兴异常,命令他的学生宰了一百头牛来庆祝这个伟大的发现,因此勾股定理又叫做“百牛定

7、理”.毕达哥拉斯(毕达哥拉斯,前572~前497),西方理性数学创始人,古希腊数学家,他是公元前五世纪的人,比商高晚出生五百多年.勾股定理给出了直角三角形三边之间的关系,即两直角边的平方和等于斜边的平方。cba公式变形c2=a2+b2a2=c2-b2b2=c2-a2课堂练习1、求下图中字母所代表的正方形的面积。225400A81225B6251442.求下列图中表示边的未知数x、y、z的值.①81144xyz

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。