评价相对有效性的DEA模型.ppt

评价相对有效性的DEA模型.ppt

ID:52201517

大小:458.00 KB

页数:30页

时间:2020-04-02

评价相对有效性的DEA模型.ppt_第1页
评价相对有效性的DEA模型.ppt_第2页
评价相对有效性的DEA模型.ppt_第3页
评价相对有效性的DEA模型.ppt_第4页
评价相对有效性的DEA模型.ppt_第5页
资源描述:

《评价相对有效性的DEA模型.ppt》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、评价相对有效性的DEA模型目录:一、DEA方法简介 二、DEA基本原理和模型 三、DEA应用案例 四、DEA主要应用领域 五、DEA最新研究进展一、DEA方法简介DEA,DataEnvelopmentAnalysis(数据包络分析方法)由Charnes、Coopor和Rhodes于1978年提出,该方法的原理主要是通过保持决策单元(DMU,DecisionMakingUnits)的输入或者输出不变,借助于数学规划和统计数据确定相对有效的生产前沿面,将各个决策单元投影到DEA的生产前沿面上,并通过比较决策单元偏离DEA前沿面的程度来评价它们的相

2、对有效性。DEA方法的特点:适用于多输出-多输入的有效性综合评价问题,在处理多输出-多输入的有效性评价方面具有绝对优势无须任何权重假设,而以决策单元输入输出的实际数据求得最优权重,排除了很多主观因素,具有很强的客观性DEA方法并不直接对数据进行综合,因此决策单元的最优效率指标与投入指标值及产出指标值的量纲选取无关,应用DEA方法建立模型前无须对数据进行无量纲化处理(当然也可以)定义:123…j…nv11x11x12x13…x1j…x1nv22x21x22x23…x2j…x2n......….vi.....Xij….......….vmmxm1

3、xm2xm3…xmj…xmny11y12y13…y1j…y1n1u1y21y22y23…y2j…y2n2u2.....…......yrj…..ur.....…..ys1ys2ys3…ysj…ysnsusm种输入n个决策单元(DMU)s种输出二、DEA基本原理和模型权系数权系数对于第j个决策单元DMUj都有相应的效率评价指数:我们总可以适当的取权系数v和u,使得hj≤1,j=1,…,n对第j0个决策单元进行效率评价,一般说来,hj0越大表明DUMj0能够用相对较少的输入而取得相对较多的输出。这样我们如果对DUMj0进行评价,看DUMj0在这n

4、个DMU中相对来说是不是最优的,我们可以考察当尽可能的变化权重时,hj0的最大值究竟是多少。如以第j0个决策单元的效率指数为目标,以所有决策单元的效率指数为约束,就构造了如下的CCR(C2R)模型:上述规划模型是一个分式规划,使用Charnes-Cooper变化,令:可变成如下的线性规划模型P:(P)利用线性规划的最优解来定义决策单元j0的有效性,从模型可以看出,该决策单元j0的有效性是相对其他所有决策单元而言的。对于CCR模型可以用规划P表达,而线性规划一个重要的有效理论是对偶理论,通过建立对偶模型更容易从理论和经济意义上作深入分析。原始问

5、题和对偶问题的标准形式如下:原始问题 对偶问题max z=cx min w=ybs.t.Ax≤bs.t. yA≥cx≥0y≥0式中max表示求极大值,min表示求极小值,s.t.表示“约束条件为”;z为原始问题的目标函数,w为对偶问题的目标函数;x为原始问题的决策变量列向量(n×1),y为对偶问题的决策变量行向量(1×m);A为原始问题的系数矩阵(m×n),b为原始问题的右端常数列向量(m×1),c为原始问题的目标函数系数行向量(1×n)。规划P的对偶规划为规划D/:(D/)为了讨论和计算应用方便,进一步引入松弛变量s+和剩余变量s-,将上面

6、的不等式约束变为等式约束,可变成:(D)将上述规划(D)直接定义为规划(P)的对偶规划几个定理和定义:定理1线性规划(P)和对偶规划(D)均存在可行解,所以都存在最优值。假设它们的最优值为别为hj0*与θ*,则有hj0*=θ*定义1若线性规划(P)的最优值hj0*=1,则称决策单元DMUj0为弱DEA有效定义2若线性规划(P)的解中存在w*>0,μ*>0,并且最优值hj0*=1,则称决策单元DMUj0为DEA有效的定理2DMUj0为弱DEA有效的充要条件是线性规划(D)的最优值θ*=1;DMUj0为DEA有效的充要条件是线性规划(D)的最优值

7、θ*=1,并且对于每个最优解λ*,都有s*+=0,s*-=0DEA有效性的定义:我们能够用CCR模型判定是否同时技术有效和规模有效:(1)θ*=1,且s*+=0,s*-=0。则决策单元j0为DEA有效,决策单元的经济活动同时为技术有效和规模有效(2)θ*=1,但至少某个输入或者输出大于0,则决策单元j0为弱DEA有效,决策单元的经济活动不是同时为技术效率最佳和规模最佳(3)θ*<1,决策单元j0不是DEA有效,经济活动既不是技术效率最佳,也不是规模最佳DEA有效性的定义:还可以用CCR模型中的λj判断DMU的规模收益情况:(1)如果存在λj*

8、(j=1,2,…,n)使得∑λj*=1,则DMU为规模收益不变(2)如果不存在λj*(j=1,2,…,n)使得∑λj*=1,若∑λj*<1,则DMU为规模收益递增(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。