高中数学必修四主要内容.doc

高中数学必修四主要内容.doc

ID:51946105

大小:1.20 MB

页数:12页

时间:2020-03-20

高中数学必修四主要内容.doc_第1页
高中数学必修四主要内容.doc_第2页
高中数学必修四主要内容.doc_第3页
高中数学必修四主要内容.doc_第4页
高中数学必修四主要内容.doc_第5页
资源描述:

《高中数学必修四主要内容.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、第一章三角函数1.1任意角和弧度制角的定义:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所形成的图形.角的分类:负角:按顺时针方向旋转形成的角正角:按逆时针方向旋转形成的角零角:射线没有任何旋转形成的角象限角的概念:①定义:若将角顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边(端点除外)在第几象限,我们就说这个角是第几象限角.终边相同的角的表示:所有与角α终边相同的角,连同α在内,可构成一个集合S={β

2、β=α+k·360,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整个周角的和.我们规定,长度等于半径的弧所对的圆心角叫做1弧度的角;用弧度来度量角的单位

3、制叫做弧度制.在弧度制下,1弧度记做1rad.在实际运算中,常常将rad单位省略.弧度制的性质:①半圆所对的圆心角为②整圆所对的圆心角为③正角的弧度数是一个正数.④负角的弧度数是一个负数.⑤零角的弧度数是零.⑥角α的弧度数的绝对值

4、α

5、=角度与弧度之间的转换:①将角度化为弧度:;;;.②将弧度化为角度:;;;.弧长公式弧长等于弧所对应的圆心角(的弧度数)的绝对值与半径的积.1.2任意角的三角函数三角函数的定义:诱导公式有向线段:坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。规定:与坐标轴方向一致时为正,与坐标方向相反时为负。三角函数线的定义:设任意角的顶点在原点,始边与轴非负半

6、轴重合,终边与单位圆相交与点,过作轴的垂线,垂足为;过点作单位圆的切线,它与角的终边或其反向延长线交与点.(Ⅰ)(Ⅱ)(Ⅳ)(Ⅲ)由四个图看出:当角的终边不在坐标轴上时,有向线段,于是有,,我们就分别称有向线段为正弦线、余弦线、正切线。(1)三条有向线段的位置:正弦线为的终边与单位圆的交点到轴的垂直线段;余弦线在轴上;正切线在过单位圆与轴正方向的交点的切线上,三条有向线段中两条在单位圆内,一条在单位圆外。(2)三条有向线段的方向:正弦线由垂足指向的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向与的终边的交点。(3)三条有向线段的正负:三条有向线段凡与轴或轴同向的为正值,与轴或轴

7、反向的为负值。(4)三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。三角函数定义在直角坐标系中,设α是一个任意角,α终边上任意一点(除了原点)的坐标为,它与原点的距离为,那么(1)比值叫做α的正弦,记作,即;(2)比值叫做α的余弦,记作,即;(3)比值叫做α的正切,记作,即;(4)比值叫做α的余切,记作,即;说明:①α的始边与轴的非负半轴重合,α的终边没有表明α一定是正角或负角,以及α的大小,只表明与α的终边相同的角所在的位置;②根据相似三角形的知识,对于确定的角α,四个比值不以点在α的终边上的位置的改变而改变大小;③当时,α的终边在轴上,终边上任意一点的横坐标都等于,所以无意

8、义;同理当时,无意义;④除以上两种情况外,对于确定的值α,比值、、、分别是一个确定的实数,正弦、余弦、正切、余切是以角为自变量,比值为函数值的函数,以上四种函数统称为三角函数。(1)商数关系:(2)平方关系:1.3诱导公式诱导公式(一)诱导公式(二)诱导公式(三)诱导公式(四)这四个可以总结为:函数名不变,符号看象限诱导公式(五)诱导公式(六)这两个总结为:函数正变余,符号看象限1.4三角函数的图像与性质(1)函数y=sinx的图象第一步:在直角坐标系的x轴上任取一点,以为圆心作单位圆,从这个圆与x轴的交点A起把圆分成n(这里n=12)等份.把x轴上从0到2π这一段分成n(这里n=12)等

9、份.(预备:取自变量x值—弧度制下角与实数的对应).第二步:在单位圆中画出对应于角,,,…,2π的正弦线正弦线(等价于“列表”).把角x的正弦线向右平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点就是正弦函数图象上的点(等价于“描点”).第三步:连线.用光滑曲线把这些正弦线的终点连结起来,就得到正弦函数y=sinx,x∈[0,2π]的图象.根据终边相同的同名三角函数值相等,把上述图象沿着x轴向右和向左连续地平行移动,每次移动的距离为2π,就得到y=sinx,x∈R的图象.把角x的正弦线平行移动,使得正弦线的起点与x轴上相应的点x重合,则正弦线的终点的轨迹就是正弦函数y=si

10、nx的图象.(2)余弦函数y=cosx的图象探究1:你能根据诱导公式,以正弦函数图象为基础,通过适当的图形变换得到余弦函数的图象?根据诱导公式,可以把正弦函数y=sinx的图象向左平移单位即得余弦函数y=cosx的图象.(课件第三页“平移曲线”)正弦函数y=sinx的图象和余弦函数y=cosx的图象分别叫做正弦曲线和余弦曲线.思考:在作正弦函数的图象时,应抓住哪些关键点?2.用五点法作正弦函数和余弦函数的简图(描点法):

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。