欢迎来到天天文库
浏览记录
ID:51943179
大小:846.46 KB
页数:30页
时间:2020-03-20
《圆锥曲线典型难题大全集学生版1资料.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、圆锥曲线典型难题大全集3030目录题型一:数形结合确定直线和圆锥曲线的位置关系3题型二:弦的垂直平分线问题5题型三:动弦过定点的问题8题型四:过已知曲线上定点的弦的问题10题型五:共线向量问题12题型六:面积问题16题型七:弦或弦长为定值问题18题型八:角度问题19问题九:四点共线问题21问题十:范围问题(本质是函数问题)22问题十一、存在性问题:2530直线和圆锥曲线经常考查的一些题型直线与椭圆、双曲线、抛物线中每一个曲线的位置关系都有相交、相切、相离三种情况,从几何角度可分为三类:无公共点,仅有一个公共点及有两个相异公共点对
2、于抛物线来说,平行于对称轴的直线与抛物线相交于一点,但并不是相切;对于双曲线来说,平行于渐近线的直线与双曲线只有一个交点,但并不相切.直线和椭圆、双曲线、抛物线中每一个曲线的公共点问题,可以转化为它们的方程所组成的方程组求解的问题,从而用代数方法判断直线与曲线的位置关系。解决直线和圆锥曲线的位置关系的解题步骤是:(1)直线的斜率不存在,直线的斜率存,(2)联立直线和曲线的方程组;(3)讨论类一元二次方程(4)一元二次方程的判别式(5)韦达定理,同类坐标变换(6)同点纵横坐标变换(7)x,y,k(斜率)的取值范围(8)目标:弦长,
3、中点,垂直,角度,向量,面积,范围等等运用的知识:1、中点坐标公式:,其中是点的中点坐标。2、弦长公式:若点在直线上,则,这是同点纵横坐标变换,是两大坐标变换技巧之一,或者。3、两条直线垂直:则两条直线垂直,则直线所在的向量304、韦达定理:若一元二次方程有两个不同的根,则。常见的一些题型:题型一:数形结合确定直线和圆锥曲线的位置关系例题1、已知直线与椭圆始终有交点,求的取值范围规律提示:通过直线的代数形式,可以看出直线的特点:证明直线过定点,也是将满足条件的直线整理成以上三种形式之一,再得出结论。30练习:1、过点P(3,2)
4、和抛物线只有一个公共点的直线有()条。 A.4 B.3 C.2 D.1规律提示:含焦点的区域为圆锥曲线的内部。(这里可以用公司的设备画图)一、过一定点P和抛物线只有一个公共点的直线的条数情况:(1)若定点P在抛物线外,则过点P和抛物线只有一个公共点的直线有3条:两条切线,一条和对称轴平行或重合的直线;(2)若定点P在抛物线上,则过点P和抛物线只有一个公共点的直线有2条:一条切线,一条和对称轴平行或重合的直线;(3)若定点P在抛物线内,则过点P和抛物线只有一个公共点的直线有1条:和抛物线的对称轴平行或重合的直线和抛物线只有
5、一个交点。二、过定点P和双曲线只有一个公共点的直线的条数情况:(1)若定点P在双曲线内,则过点P和双曲线只有一个公共点的直线有2条:和双曲线的渐近线平行的直线和双曲线只有一个公共点;(2)若定点P在双曲线上,则过点P和双曲线只有一个公共点的直线有3条:一条切线,2条和渐近线平行的直线;(3)若定点P在双曲线外且不在渐近线上,则过点P和双曲线只有一个公共点的直线有4条:2条切线和2条和渐近线平行的直线;(4)若定点P在双曲线外且在一条渐近线上,而不在另一条渐近线上,则过点P和双曲线只有一个公共点的直线有2条:一条切线,一条和另一条
6、渐近线平行的直线;(5)若定点P在两条渐近线的交点上,即对称中心,过点P和双曲线只有一个公共点的直线不存在。30题型二:弦的垂直平分线问题弦的垂直平分线问题和对称问题是一种解题思维,首先弄清楚哪个是弦,哪个是对称轴,用到的知识是:垂直(两直线的斜率之积为-1)和平分(中点坐标公式)。例题2、过点T(-1,0)作直线与曲线N:交于A、B两点,在x轴上是否存在一点E(,0),使得是等边三角形,若存在,求出;若不存在,请说明理由。思维规律:直线过定点设直线的斜率k,利用韦达定理法,将弦的中点用k表示出来,再利用垂直关系将弦的垂直平分线
7、方程写出来,求出了横截距的坐标;再利用正三角形的性质:高是边长的倍,将k确定,进而求出的坐标。30例题3、已知椭圆的左焦点为F,O为坐标原点。(Ⅰ)求过点O、F,并且与相切的圆的方程;(Ⅱ)设过点F且不与坐标轴垂直的直线交椭圆于A、B两点,线段AB的垂直平分线与x轴交于点G,求点G横坐标的取值范围。技巧提示:直线过定点设直线的斜率k,利用韦达定理,将弦的中点用k表示出来,韦达定理就是同类坐标变换的技巧,是解析几何中解决直线和圆锥曲线问题的两大技巧之第一个技巧。再利用垂直关系将弦AB的垂直平分线方程写出来,就求出了横截距的坐标(关
8、于k的函数)。直线和圆锥曲线中参数的范围问题,就是函数的值域问题。30练习1:已知椭圆过点,且离心率。(Ⅰ)求椭圆方程;(Ⅱ)若直线与椭圆交于不同的两点、,且线段的垂直平分线过定点,求的取值范围。规律总结:如果只说一条直线和椭圆相交,没有说直线过点或没给出直线的
此文档下载收益归作者所有