欢迎来到天天文库
浏览记录
ID:51938130
大小:32.50 KB
页数:5页
时间:2020-03-19
《圆和圆的位置关系.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、靖边第五中学九年级数学备课组第6课时2012年2月20日星期一课题圆和圆的位置关系备课教师杨志成授课教师吕宏雄教学目标知识与技能1.了解圆与圆之间的几种位置关系.2.了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.过程与方法1.经历探索两个圆之间位置关系的过程,训练学生的探索能力.2.通过平移实验直观地探索圆和圆的位置关系,发展学生的识图能力和动手操作能力.情感与价值观1.通过探索圆和圆的位置关系,体验数学活动充满着探索与创造,感受数学的严谨性以及数学结论的确定性.2.经历探究图形的
2、位置关系,丰富对现实空间及图形的认识,发展形象思维.教学重点探索圆与圆之间的几种位置关系,了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.教学难点探索两个圆之间的位置关系,以及外切、内切时两圆圆心距d、半径R和r的数量关系的过程.教学方法与关键启发、引导教学准备教师准备教案、课件、习题学生准备预习教学过程教师活动学生活动一、导学抽查Ⅰ.创设问题情境,引入新课[师]我们已经研究过点和圆的位置关系,分别为点在圆内、点在圆上、点在圆外三种;还探究了直线和圆的位置关系,分别为相离、相切、相交
3、.它们的位置关系都有三种.今天我们要学习的内容是圆和圆的位置关系,那么结果是不是也是三种呢?没有调查就没有发言权.下面我们就来进行有关探讨.1.⊙O1和⊙O2的半径分别为3cm和4cm,若两圆外切,则d=_____;若两圆内切;则d=____.2.如果两个圆相切,那么切点和两圆的圆心_____.3.半径为5cm的⊙O外一点P,则以点P为圆心且与⊙O相切的⊙P能画_______个.4.两圆半径之比为3:5,当两圆内切时,圆心距为4cm,则两圆外切时圆心距的长为_____.5.两圆内切时圆心距是2,这
4、两圆外切时圆心距是5,两圆的半径分别是______、6.两圆的半径分别为10cm和R、圆心距为13cm,学生回忆巩固以前学过的知识若这两个圆相切,则R的值是二、学习目标1.了解圆与圆之间的几种位置关系.2.了解两圆外切、内切与两圆圆心距d、半径R和r的数量关系的联系.三、自学检测二、探索圆和圆的位置关系在一张透明纸上作一个⊙O.再在另一张透明纸上作一个与⊙O1半径不等的⊙O2.把两张透明纸叠在一起,固定⊙O1,平移⊙O2,⊙O1与⊙O2有几种位置关系?[师]请大家先自己动手操作,总结出不同的位置关
5、系,然后互相交流.[生]我总结出共有五种位置关系,如下图:[师]大家的归纳、总结能力很强,能说出五种位置关系中各自有什么特点吗?从公共点的个数和一个圆上的点在另一个圆的内部还是外部来考虑.[生]如图:(1)外离:两个圆没有公共点,并且每一个圆上的点都在另一个圆的外部;(2)外切:两个圆有唯一公共点,除公共点外一个圆上的点都在另一个圆的外部;(3)相交:两个圆有两个公共点,一个圆上的点有的在另一个圆的外部,有的在另一个圆的内部;(4)内切:两个圆有一个公共点,除公共点外,⊙O2上的点在⊙O1的内部;
6、(5)内含:两个圆没有公共点,⊙O2上的点都在⊙O1的内部.投影片(§3.6A)(1)如果从公共点的个数,和一个圆上的点在另一个圆的外部还是内部来考虑,两个圆的位置关系有五种:外离、外切、相交、内切、内含.(2)如果只从公共点的个数来考虑分三种:相离、相切、相交,并且相离外离外切,相切学生在讨论中相互补充、相互完善。内含内切靖边第五中学九年级数学备课组教学过程教师活动学生活动四、个案补充三、例题讲解投影片(§3.6B)两个同样大小的肥皂泡黏在一起,其剖面如图所示(点O,O′是圆心),分隔两个肥皂泡
7、的肥皂膜PQ成一条直线,TP、NP分别为两圆的切线,求∠TPN的大小.分析:因为两个圆大小相同,所以半径OP=O′P=OO′,又TP、NP分别为两圆的切线,所以PT⊥OP,PN⊥O′P,即∠OPT=∠O′PN=90°,所以∠TPN等于360°减去∠OPT+∠O′PN+∠OPO°即可.解:∵OP=OO′=PO′,∴△PO′O是一个等边三角形.∴∠OPO′=60°.又∵TP与NP分别为两圆的切线,∴∠TPO=∠NPO′=90°.∴∠TPN=360°-2×90°-60°=120°.先让学生独立思考、再小
8、组交流逐步渗透用数学语言说理能力五、反馈矫正四、想一想如图(1),⊙O1与⊙O2外切,这个图是轴对称图形吗?如果是,它的对称轴是什么?切点与对称轴有什么位置关系?如果⊙O1与⊙O2内切呢?[如图(2)][师]我们知道圆是轴对称图形,对称轴是任一直径所在的直线,两个圆是否也组成一个轴对称图形呢?这就要看切点了是否在连接两个圆心的直线上,下面我们用反证法来证明.反证法的步骤有三步:第一步是假设结论不成立;第二步是根据假设推出和已知条件或定理相矛盾的结论;第三步是证明假设错误,则原来的结
此文档下载收益归作者所有