直线一般式方程(教案).doc

直线一般式方程(教案).doc

ID:51932489

大小:62.50 KB

页数:8页

时间:2020-03-19

直线一般式方程(教案).doc_第1页
直线一般式方程(教案).doc_第2页
直线一般式方程(教案).doc_第3页
直线一般式方程(教案).doc_第4页
直线一般式方程(教案).doc_第5页
资源描述:

《直线一般式方程(教案).doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、.3.2.3直线的一般式方程(教案)教学目标:1、知识与能力:⑴掌握直线方程的一般式Ax+By+C=0的特征(A、B不同时为0)⑵能将直线方程的五种形式进行转化,并明确各种形式中的一些几何量(斜率、截距等);2、过程与方法:⑴主动参与探究直线和二元一次方程关系的数学活动,通过观察、推理、探究获得直线方程的一般式。⑵学会分类讨论及掌握讨论的分界点;3、情感、态度与价值观:体验数学发现和探索的历程,发展创新意识教学重点:直线方程一般式Ax+By+C=0(A、B不同时为0)的理解教学难点:⑴直线方程一般式Ax

2、+By+C=0(A、B不同时为0)与二元一次方程关系的深入理解⑵直线方程一般式Ax+By+C=0(A、B不同时为0)的应用。教学方法:引导探究法、讨论法教学过程: 创设情境,引入新课:word范文.1、 复习:写出前面学过的直线方程的各种不同形式,并指出其局限性:名称几何条件方程局限性点斜式 点P(x0,y0)和斜率ky-y0=k(x-x0) 斜率存在的直线斜截式 斜率k,y轴上的截距b y=kx+b 斜率存在的直线两点式 P1(x1,y1),P2(x2,y2)  不垂直于x、y轴的直线截距式 在x轴上

3、的截距a,在y轴上的截距b  不垂直于x、y轴的直线,不过原点的直线过点(x0,y0)与x轴垂直的直线可表示成x=x0,过点(x0,y0)与y轴垂直的直线可表示成y=y0。word范文.2、 问题:上述四种直线方程的表示形式都有其局限性,是否存在一种更为完美的代数形式可以表示平面中的所有直线?提示:上述四种形式的直线方程有何共同特征?能否整理成统一形式?(这些方程都是关于x、y的二元一次方程)猜测:直线和二元一次方程有着一定的关系。新课探究:问题:(1).过点(2,1),斜率为2的直线的方程是y-1=2

4、(x-2),(2).过点(2,1),斜率为0的直线方程是y=1,(3).过点(2,1),斜率不存在的直线的方程是x=2,思考1:以上方程是否都可以用Ax+By+C=0表示?任意一条直线是否都可以用二元一次方程Ax+By+C=0(A、B不同时为0)来表示?答:2x-y-3=0y-1=0x-2=0在平面直角坐标系中,每一条直线有斜率k存在和k不存在两种情况下,直线方程可分别写为和两种形式,它们又都可以变形为Ax+By+C=0(A、B不同时为0)的形式,即:直线Ax+By+C=0(A、B不同时为0)【结论:】

5、在平面直角坐标系中,任意一条直线都可以用二元一次方程Ax+By+C=0(A、B不同时为0)来表示。思考2:对于任意一个二元一次方程Ax+By+C=0(A,B不同时为零)能否表示一条直线?word范文.证明:(1)当B≠0时,方程可变形为它表示过点(0,-)斜率为-的直线(2)当B=0时因为A,B不同时为0所以A≠0则有Ax=-C即x=-这表示的是与x轴垂直的直线【结论:】每个一个二元一次方程Ax+By+C=0(A,B不同时为零)都表示一条直线。由上面讨论可知,(1)平面上任一条直线都可以用一个关于x,y

6、的二元一次方程表示,(2)关于x,y的二元一次方程都表示一条直线.1.直线的一般式方程我们把关于x,y的二元一次方程Ax+By+C=0(A,B不同时为零)叫做直线的一般式方程,简称一般式注:对于直线方程的一般式,一般作如下约定:(1)、一般按含x项、含y项、常数项顺序排列(2)、x项的系数为正;(3)、x,y的系数和常数项一般不出现分数;(4)、无特别说明时,最好将所求直线方程的结果写成一般式。深入探究:二元一次方程Ax+By+C=0的系数A,B和常数项C对直线的位置的影响:①平行与x轴A=0,B≠0,

7、C≠0;word范文.②平行与y轴B=0,A≠0,C≠0;③与x轴重合A=0,B≠0,C=0;④与y轴重合B=0,A≠0,C=0;⑤过原点C=0,A、B不同时为0;例题分析:例1、已知直线经过点A(6,-4)斜率为-,求直线的点斜式方程,一般式方程和截距式方程。解:经过点A(6,-4)斜率为-的直线的点斜式方程为y+4=-(x-6)化为一般式为4x+3y-12=0截距式方程为说明:在讨论直线问题时,常常将直线方程的形式相互转化。例2根据下列条件,写出直线的方程,并把它化成一般式:1.经过点P(3,-2)

8、,Q(5,-4);解:直线的两点式方程为化为一般式方程为x+y-1=02.在x轴,y轴上的截距分别是2,3解:直线的截距式方程为化为一般式方程为3x+2y-6=0说明:在遇到问题时,根据条件写出适当形式的方程,然后再化为一般式。课堂小结:1、关于x,y的二元一次方程Ax+By+C=0(A,B不同时为零)叫做直线的一般式方程,简称一般式。word范文.2、二元一次方程Ax+By+C=0的系数A,B和常数项C对直线的位置的影响:①平行与x轴A=

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。