欢迎来到天天文库
浏览记录
ID:51921356
大小:606.50 KB
页数:25页
时间:2020-03-19
《上海市松江区2017年中考数学一模试卷含答案解析.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、2017年上海市松江区中考数学一模试卷 一、选择题:(本大题共6题,每题4分,满分24分)1.已知在Rt△ABC中,∠C=90°,如果BC=2,∠A=α,则AC的长为( )A.2sinαB.2cosαC.2tanαD.2cotα2.下列抛物线中,过原点的抛物线是( )A.y=x2﹣1B.y=(x+1)2C.y=x2+xD.y=x2﹣x﹣13.小明身高1.5米,在操场的影长为2米,同时测得教学大楼在操场的影长为60米,则教学大楼的高度应为( )A.45米B.40米C.90米D.80米4.已知非零向量,,,下列条件中,不能判定
2、∥的是( )A.∥,∥B.C.=D.=,=5.如图,在▱ABCD中,点E是边BA延长线上的一点,CE交AD于点F.下列各式中,错误的是( )A.B.C.D.6.如图,已知在△ABC中,cosA=,BE、CF分别是AC、AB边上的高,联结EF,那么△AEF和△ABC的周长比为( )A.1:2B.1:3C.1:4D.1:9 二、填空题:(本大题共12题,每题4分,满分48分)7.已知,则的值为 .8.计算:(﹣3)﹣(+2)= .9.已知抛物线y=(k﹣1)x2+3x的开口向下,那么k的取值范围是 .10.把抛物线y=x
3、2向右平移4个单位,所得抛物线的解析式为 .11.已知在△ABC中,∠C=90°,sinA=,BC=6,则AB的长是 .12.如图,已知AB∥CD∥EF,它们依次交直线l1、l2于点A、C、E和点B、D、F,如果AC:CE=3:5,BF=9,那么DF= .13.已知点A(2,y1)、B(5,y2)在抛物线y=﹣x2+1上,那么y1 y2.(填“>”、“=”或“<”)14.已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线 .15.在△ABC中,AB=AC=5,BC=8,AD⊥BC,
4、垂足为D,BE是△ABC的中线,AD与BE相交于点G,那么AG的长为 .16.在一个距离地面5米高的平台上测得一旗杆底部的俯角为30°,旗杆顶部的仰角为45°,则该旗杆的高度为 米.(结果保留根号)17.如图,在Rt△ABC中,∠ACB=90°,BC=3,AC=4,AB的垂直平分线DE交BC的延长线于点E,则CE的长为 .18.如图,在△ABC中,∠ACB=90°,AB=9,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E,则点A、E之间的距离为 . 三、解答题:(本大题共7题,满分78分)1
5、9.计算:.20.如图,已知点D是△ABC的边BC上一点,且BD=CD,设=,=.(1)求向量(用向量、表示);(2)求作向量在、方向上的分向量.(不要求写作法,但要指出所作图中表示结论的向量)21.如图,已知AC∥BD,AB和CD相交于点E,AC=6,BD=4,F是BC上一点,S△BEF:S△EFC=2:3.(1)求EF的长;(2)如果△BEF的面积为4,求△ABC的面积.22.某大型购物商场在一楼和二楼之间安装自动扶梯AC,截面如图所示,一楼和二楼地面平行(即AB所在的直线与CD平行),层高AD为8米,∠ACD=20°,为使
6、得顾客乘坐自动扶梯时不至于碰头,A、B之间必须达到一定的距离.(1)要使身高2.26米的姚明乘坐自动扶梯时不碰头,那么A、B之间的距离至少要多少米?(精确到0.1米)(2)如果自动扶梯改为由AE、EF、FC三段组成(如图中虚线所示),中间段EF为平台(即EF∥DC),AE段和FC段的坡度i=1:2,求平台EF的长度.(精确到0.1米)(参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)23.如图,Rt△ABC中,∠ACB=90°,D是斜边AB上的中点,E是边BC上的点,AE与CD交于点F,且AC2
7、=CE•CB.(1)求证:AE⊥CD;(2)连接BF,如果点E是BC中点,求证:∠EBF=∠EAB.24.如图,抛物线y=﹣x2+bx+c过点B(3,0),C(0,3),D为抛物线的顶点.(1)求抛物线的解析式以及顶点坐标;(2)点C关于抛物线y=﹣x2+bx+c对称轴的对称点为E点,联结BC,BE,求∠CBE的正切值;(3)点M是抛物线对称轴上一点,且△DMB和△BCE相似,求点M坐标.25.如图,已知四边形ABCD是矩形,cot∠ADB=,AB=16.点E在射线BC上,点F在线段BD上,且∠DEF=∠ADB.(1)求线段BD
8、的长;(2)设BE=x,△DEF的面积为y,求y关于x的函数关系式,并写出函数定义域;(3)当△DEF为等腰三角形时,求线段BE的长. 2017年上海市松江区中考数学一模试卷参考答案与试题解析 一、选择题:(本大题共6题,每题4分,满分24分)1.已知在Rt△A
此文档下载收益归作者所有