2015年全国中考数学试卷解析分类汇编(第三期)专题21 全等三角形.doc

2015年全国中考数学试卷解析分类汇编(第三期)专题21 全等三角形.doc

ID:51873061

大小:1.06 MB

页数:56页

时间:2020-03-17

2015年全国中考数学试卷解析分类汇编(第三期)专题21 全等三角形.doc_第1页
2015年全国中考数学试卷解析分类汇编(第三期)专题21 全等三角形.doc_第2页
2015年全国中考数学试卷解析分类汇编(第三期)专题21 全等三角形.doc_第3页
2015年全国中考数学试卷解析分类汇编(第三期)专题21 全等三角形.doc_第4页
2015年全国中考数学试卷解析分类汇编(第三期)专题21 全等三角形.doc_第5页
资源描述:

《2015年全国中考数学试卷解析分类汇编(第三期)专题21 全等三角形.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、全等三角形一、选择题1.(2015,广西柳州,12,3分)如图,G,E分别是正方形ABCD的边AB,BC的点,且AG=CE,AE⊥EF,AE=EF,现有如下结论:①BE=GE;②△AGE≌△ECF;③∠FCD=45°;④△GBE∽△ECH其中,正确的结论有(  ) A.1个B.2个C.3个D.4个考点:全等三角形的判定与性质;正方形的性质;相似三角形的判定与性质.分析:根据正方形的性质得出∠B=∠DCB=90°,AB=BC,求出BG=BE,根据勾股定理得出BE=GE,即可判断①;求出∠GAE+∠AEG=45°,

2、推出∠GAE=∠FEC,根据SAS推出△GAE≌△CEF,即可判断②;求出∠AGE=∠ECF=135°,即可判断③;求出∠FEC<45°,根据相似三角形的判定得出△GBE和△ECH不相似,即可判断④.解答:解:∵四边形ABCD是正方形,∴∠B=∠DCB=90°,AB=BC,∵AG=CE,∴BG=BE,由勾股定理得:BE=GE,∴①错误;∵BG=BE,∠B=90°,∴∠BGE=∠BEG=45°,∴∠AGE=135°,∴∠GAE+∠AEG=45°,∵AE⊥EF,∴∠AEF=90°,∵∠BEG=45°,∴∠AEG+∠

3、FEC=45°,∴∠GAE=∠FEC,在△GAE和△CEF中∴△GAE≌△CEF,∴②正确;∴∠AGE=∠ECF=135°,∴∠FCD=135°﹣90°=45°,∴③正确;∵∠BGE=∠BEG=45°,∠AEG+∠FEC=45°,∴∠FEC<45°,∴△GBE和△ECH不相似,∴④错误;即正确的有2个.故选B.点评:本题考查了正方形的性质,等腰三角形的性质,全等三角形的性质和判定,相似三角形的判定,勾股定理等知识点的综合运用,综合比较强,难度较大.2.(3分)(2015•广东茂名8,3分)如图,OC是∠AOB的

4、平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为(  ) A.6B.5C.4D.3考点:角平分线的性质.分析:过点P作PE⊥OB于点E,根据角平分线上的点到角的两边的距离相等可得PE=PD,从而得解.解答:解:如图,过点P作PE⊥OB于点E,∵OC是∠AOB的平分线,PD⊥OA于D,∴PE=PD,∵PD=6,∴PE=6,即点P到OB的距离是6.故选:A.点评:本题考查了角平分线上的点到角的两边的距离相等的性质,是基础题,比较简单,熟记性质是解题的关键.3.(2015•湖北十堰,第10题

5、3分)如图,正方形ABCD的边长为6,点E、F分别在AB,AD上,若CE=3,且∠ECF=45°,则CF的长为(  ) A.2B.3C.D.考点:全等三角形的判定与性质;勾股定理;正方形的性质.分析:首先延长FD到G,使DG=BE,利用正方形的性质得∠B=∠CDF=∠CDG=90°,CB=CD;利用SAS定理得△BCE≌△DCG,利用全等三角形的性质易得△GCF≌△ECF,利用勾股定理可得AE=3,设AF=x,利用GF=EF,解得x,利用勾股定理可得CF.解答:解:如图,延长FD到G,使DG=BE;连接CG、E

6、F;∵四边形ABCD为正方形,在△BCE与△DCG中,,∴△BCE≌△DCG(SAS),∴CG=CE,∠DCG=∠BCE,∴∠GCF=45°,在△GCF与△ECF中,,∴△GCF≌△ECF(SAS),∴GF=EF,∵CE=3,CB=6,∴BE===3,∴AE=3,设AF=x,则DF=6﹣x,GF=3+(6﹣x)=9﹣x,∴EF==,∴(9﹣x)2=9+x2,∴x=4,即AF=4,∴GF=5,∴DF=2,∴CF===2,故选A.点评:本题主要考查了全等三角形的判定及性质,勾股定理等,构建全等三角形,利用方程思想是

7、解答此题的关键.4.(2015•北海,第12题3分)如图,在矩形OABC中,OA=8,OC=4,沿对角线OB折叠后,点A与点D重合,OD与BC交于点E,则点D的坐标是(  ) A.(4,8)B.(5,8)C.(,)D.(,)考点:翻折变换(折叠问题);坐标与图形性质.专题:计算题.分析:由四边形ABCD为矩形,利用矩形的性质得到两对边相等,再利用折叠的性质得到OA=OD,两对角相等,利用HL得到直角三角形BOC与直角三角形BOD全等,利用全等三角形对应角相等及等角对等边得到OE=EB,在直角三角形OCE中,设C

8、E=x,表示出OE,利用勾股定理求出x的值,确定出CE与OE的长,进而由三角形COE与三角形DEF相似,求出DF与EF的长,即可确定出D坐标.解答:解:∵矩形ABCD中,OA=8,OC=4,∴BC=OA=8,AB=OC=4,由折叠得到OD=OA=BC,∠AOB=∠DOB,∠ODB=∠BAO=90°,在Rt△CBP和Rt△DOB中,,∴Rt△CBP≌Rt△DOB(HL),∴∠CBO=∠D

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。