小学三年级奥数_第7讲数阵图_.doc

小学三年级奥数_第7讲数阵图_.doc

ID:51783153

大小:107.00 KB

页数:6页

时间:2020-03-15

小学三年级奥数_第7讲数阵图_.doc_第1页
小学三年级奥数_第7讲数阵图_.doc_第2页
小学三年级奥数_第7讲数阵图_.doc_第3页
小学三年级奥数_第7讲数阵图_.doc_第4页
小学三年级奥数_第7讲数阵图_.doc_第5页
资源描述:

《小学三年级奥数_第7讲数阵图_.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、顿悟教育三年级数学培优训练 第七讲数阵图  在神奇的数学王国中,有一类非常有趣的数学问题,它变化多端,引人入胜,奇妙无穷。它就是数阵,一座真正的数字迷宫,它对喜欢探究数字规律的人有着极大的吸引力,以至有些人留连其中,用毕生的精力来研究它的变化,就连大数学家欧拉对它都有着浓厚的兴趣。  那么,到底什么是数阵呢?我们先观察下面两个图:  左上图中有3个大圆,每个圆周上都有四个数字,有意思的是,每个圆周上的四个数字之和都等于13。右上图就更有意思了,1~9九个数字被排成三行三列,每行的三个数字之和与每列的三个数字之和,以及每条对角线上的三个数字之和都等于15,不信你

2、就算算。  上面两个图就是数阵图。准确地说,数阵图是将一些数按照一定要求排列而成的某种图形,有时简称数阵。要排出这样巧妙的数阵图,可不是一件容易的事情。我们还是先从几个简单的例子开始。例1把1~5这五个数分别填在左下图中的方格中,使得横行三数之和与竖列三数之和都等于9。  同学们可能会觉得这道题太容易了,七拼八凑就写出了右上图的答案,可是却搞不清其中的道理。下面我们就一起来分析其中的道理,只有弄懂其中的道理,才可能解出复杂巧妙的数阵问题。分析与解:中间方格中的数很特殊,横行的三个数有它,竖列的三个数也有它,我们把它叫做“重叠数”。也就是说,横行的三个数之和加上

3、竖列的三个数之和,只有重叠数被加了两次,即重叠了一次,其余各数均被加了一次。因为横行的三个数之和与竖列的三个数之和都等于9,所以  (1+2+3+4+5)+重叠数=9+9,  重叠数=(9+9)-(1+2+3+4+5)=3。  重叠数求出来了,其余各数就好填了(见右上图)。例2把1~5这五个数填入下页左上图中的○里(已填入5),使两条直线上的三个数之和相等。分析与解:与例1不同之处是已知“重叠数”为5,而不知道两条直线上的三个数之和都等于什么数。所  以,必须先求出这个“和”。根据例1的分析知,两条直线上的三个数相加,只有重叠数被加了两遍,其余各数均被加了一遍

4、,所以两条直线上的三个数之和都等于  [(1+2+3+4+5)+5]÷2=10。  因此,两条直线上另两个数(非“重叠数”)的和等于10-5=5。在剩下的四个数1,2,3,4中,只有1+4=2+3=5。故有右上图的填法。例3把1~5这五个数填入右图中的○里,使每条直线上的三个数之和相等。分析与解:例1是知道每条直线上的三数之和,不知道重叠数;例2是知道重叠数,不知道两条直线上的三个数之和;本例是这两样什么都不知道。但由例1、例2的分析知道,  (1+2+3+4+5)+重叠数  =每条直线上三数之和×2,  所以,每条直线上三数之和等于(15+重叠数)÷2。  

5、因为每条直线上的三数之和是整数,所以重叠数只可能是1,3或5。  若“重叠数”=1,则两条直线上三数之和为  (15+1)÷2=8。  填法见左下图;  若“重叠数”=3,则两条直线上三数之和为  (15+3)÷2=9。  填法见下中图;  若“重叠数”=5,则两条直线上三数之和为  (15+5)÷2=10。  填法见右下图。  由以上几例看出,求出重叠数是解决数阵问题的关键。为了进一步学会掌握这种解题方法,我们再看两例。例4将1~7这七个自然数填入左下图的七个○内,使得每条边上的三个数之和都等于10。 分析与解:与例1类似,知道每条边上的三数之和,但不知道重

6、叠数。因为有3条边,所以中间的重叠数重叠了两次。于是得到  (1+2+…+7)+重叠数×2=10×3。  由此得出重叠数为  [10×3-(1+2+…+7)]÷2=1。  剩下的六个数中,两两之和等于9的有2,7;3,6;4,5。可得右上图的填法。  如果把例4中“每条边上的三个数之和都等于10”改为“每条边上的三个数之和都相等”,其他不变,那么仿照例3,重叠数可能等于几?怎样填?例5将10~20填入左下图的○内,其中15已填好,使得每条边上的三个数字之和都相等。解:与例2类似,中间○内的15是重叠数,并且重叠了四次,所以每条边上的三个数字之和等于  [(10

7、+11+…+20)+15×4]÷5=45。  剩下的十个数中,两两之和等于(45-15=)30的有10,20;11,19;12,18;13,17;14,16。于是得到右上图的填法。例1~5都具有中心数是重叠数,并且每边的数字之和都相等的性质,这样的数阵图称为辐射型。例4的图中有三条边,每边有三个数,称为辐射型3—3图;例5有五条边每边有三个数,称为辐射型5—3图。  一般地,有m条边,每边有n个数的形如下图的图形称为辐射型m-n图。  辐射型数阵图只有一个重叠数,重叠次数是“直线条数”-1,即m-1。对于辐射型数阵图,有:已知各数之和+重叠数×重叠次数=直线上

8、各数之和×直线条数。  由此得到:(1

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。