高中数学必修3常用公式及结论.doc

高中数学必修3常用公式及结论.doc

ID:51771620

大小:50.77 KB

页数:3页

时间:2020-03-15

高中数学必修3常用公式及结论.doc_第1页
高中数学必修3常用公式及结论.doc_第2页
高中数学必修3常用公式及结论.doc_第3页
资源描述:

《高中数学必修3常用公式及结论.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、高中数学必修3常用公式及结论第一章算法初步1、算法概念:在数学上,现代意义上的“算法”通常是指可以用计算机来解决的某一类问题是程序或步骤,这些程序或步骤必须是明确和有效的,而且能够在有限步之内完成.2、构成程序框的图形符号及其作用程序框名称功能起止框表示一个算法的起始和结束,是任何流程图不可少的。输入、输出框表示一个算法输入和输出的信息,可用在算法中任何需要输入、输出的位置。处理框赋值、计算,算法中处理数据需要的算式、公式等分别写在不同的用以处理数据的处理框内。判断框判断某一条件是否成立,成立时在出口处标明“是”或“Y”;

2、不成立时标明“否”或“N”。3、算法的三种基本逻辑结构:顺序结构、条件结构、循环结构。(结构图请看教材)4、(1)、辗转相除法:用较大的数除以较小的数所得的余数和较小的数构成新的一对数,继续做上面的除法,直到大数被小数除尽,这个较小的数就是最大公约数。(2)、更相减损术。以较大的数减去较小的数,接着把较小的数与所得的差比较,并以大数减小数。继续这个操作,直到所得的数相等为止,则这个数(等数)就是所求的最大公约数。(3)进位制①以k为基数的k进制换算为十进制:②十进制换算为k进制:除以k取余,倒序排列第二章统计1.总体和样本

3、:在统计学中,把研究对象的全体叫做总体.把每个研究对象叫做个体.把总体中个体的总数叫做总体容量.为了研究总体的有关性质,一般从总体中随机抽取一部分:,,,研究,我们称它为样本.其中个体的个数称为样本容量.2、简单随机抽样,也叫纯随机抽样。就是从总体中不加任何分组、划类、排队等,完全随机地抽取调查单位。特点是:每个样本单位被抽中的可能性相同。(总体个数较少)高中数学知识点总结第3页共3页3、简单随机抽样常用的方法:(1)抽签法;⑵随机数表法;⑶计算机模拟法;4、系统抽样(等距抽样):把总体的单位进行排序,再计算出抽样距离,然

4、后按照这一固定的抽样距离抽取样本。第一个样本采用简单随机抽样的办法抽取。(总体个数较多)K(抽样距离)=N(总体规模)/n(样本规模)5、分层抽样:先将总体中的所有单位按照某种特征或标志(性别、年龄等)划分成若干类型或层次,然后再在各个类型或层次中采用简单随机抽样或系统抽样的办法抽取一个子样本,最后,将这些子样本合起来构成总体的样本。先以分层变量将总体划分为若干层,再按照各层在总体中的比例从各层中抽取。(总体中差异明显)6、总体分布的估计:⑴一表二图:①频率分布表——数据详实②频率分布直方图——分布直观③频率分布折线图——

5、便于观察总体分布趋势注:总体分布的密度曲线与横轴围成的面积为1。⑵茎叶图:①茎叶图适用于数据较少的情况,从中便于看出数据的分布,以及中位数、众位数等。②个位数为叶,十位数为茎,右侧数据按照从小到大书写,相同的数重复写。7、用样本的数字特征估计总体的数字特征(s为标准差)(1)、平均值:(2)、8、两个变量的线性相关(1)、概念:(1)回归直线方程:(2)回归系数:,(3).应用直线回归时注意:回归分析前,最好先作出散点图;第三章概率一、概念1、事件:试验的每一种可能的结果,用大写英文字母表示;(1)必然事件:在条件S下,一

6、定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;2、古典概型:⑴基本事件:一次试验中可能出现的每一个基本结果;⑵古典概型的特点:基本事件可列举;每个基本事件都是等可能发生⑶概率计算公式:一次试验的等可能基本事件共有n个,事件A包含了其中的m个基本事件,则事件A发生的概率3、几何概型:⑴特点:①所有的基本事件是无限个;②每个基本事件都是等可能发生。⑵几何概型概率计算公式:。高

7、中数学知识点总结第3页共3页4、若A∩B=ф,即不可能同时发生的两个事件,那么称事件A与事件B互斥;5、若A∩B为不可能事件,A∪B为必然事件,即不能同时发生且必有一个发生的两个事件,那么称事件A与事件B互为对立事件;二、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0≤P(A)≤1;2)当事件A与B互斥时,满足加法公式:P(A∪B)=P(A)+P(B);3)若事件A与B为对立事件,则A∪B为必然事件,所以P(A∪B)=P(A)+P(B)=1,于是有P(A)=1—P(B);4)互斥事件与对立事件的区别与联系

8、,互斥事件是指事件A与事件B在一次试验中不会同时发生,具体包括三种不同的情形:(1)事件A发生且事件B不发生;(2)事件A不发生且事件B发生;(3)事件A与事件B同时不发生,而对立事件是指事件A与事件B有且仅有一个发生,其包括两种情形;(1)事件A发生B不发生;(2)事件B发生事件A不发生,对立事件是互

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。