《概率的意义》教案.doc

《概率的意义》教案.doc

ID:51737800

大小:89.50 KB

页数:4页

时间:2020-03-15

《概率的意义》教案.doc_第1页
《概率的意义》教案.doc_第2页
《概率的意义》教案.doc_第3页
《概率的意义》教案.doc_第4页
资源描述:

《《概率的意义》教案.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、《概率的意义》教案【课题】25.1.2概率的意义(第一课时)【教材】义务教育新课程标准实验教科书人教版九年级上册【教学目标】1•知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义3.让学生经历猜想试验一收集数据一分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型•初步理解频率与概率的关系.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、动手实践,合作探究1-教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投

2、掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来…2.教师巡视学生分组试验情况.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因•使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数

3、,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P也要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.表25-2抛掷次数斤50100150200250300350400450500“正面向上”的频数加“正面向上”的频率m/nmA正面向上的频率—n0.550100150200250300350450500投掷次数n图25.1-1想一想1(投影出示).观察统计表与统计图,你发现“正面向上”的频率有什么规律?注意学生的语言表述情况,意思正确予以肯定与鼓励•“

4、正面朝上”的频率在0.5上下波动.想一想2(投影出示)随着抛掷次数增加,“正面向上"的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳•使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性•在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5.这也与我们刚开始的猜想是一致的•我们就用0.5这个常数表示“正面向上”发生的可能性的大小.其实,历史上有许多著名数学家也做过掷硬币的试验•让学生阅读历史上数学家做掷币试验的数据统计表(看书P,表25-3).表25-3试验

5、者抛掷次数(n)“正面朝上”次数(m)“正面向上”频率(m/n)棣莫弗204810610.518布丰404020480.5069费勒1000049790.4979皮尔逊1200060190.5016皮尔逊24000120120.5005通过以上学生亲自动手实践,电脑辅助演示,历史材料展示,让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率)•同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.2.下面我们能否研究一下“反面向上”的频率情

6、况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半)•也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验一一收集数据一一分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.二、评价概括,揭示新

7、知问题1・通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?学生探究交流•发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义•给出概率定义(板书):一般地,在大量重复试验中,如果事件A发生的频率m/n会稳定在某个常数p附近,那么这个常数P就叫做事件A的概率(probability),记作P(A)=p.注

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。