欢迎来到天天文库
浏览记录
ID:51668775
大小:1.82 MB
页数:41页
时间:2020-03-14
《高中数学易错点梳理.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、高中数学易错点梳理数学中的隐含条件往往最容易被忽视,这些隐含条件通常被称为题中的“陷阱”,解题过程中一不小心就会掉进去。本文列举出了高中课本中一些常见的易错点,希望同学们在今后的学习中引以为戒。一、集合与简易逻辑易错点1对集合表示方法理解存在偏差【问题】1:已知,求。错解:剖析:概念模糊,未能真正理解集合的本质。正确结果:【问题】2:已知,求。错解:正确答案:剖析:审题不慎,忽视代表元素,误认为为点集。反思:对集合表示法部分学生只从形式上“掌握”,对其本质的理解存在误区,常见的错误是不理解集合的表示法,
2、忽视集合的代表元素。易错点2在解含参数集合问题时忽视空集【问题】:已知,且,求的取值范围。错解:[-1,0)剖析:忽视的情况。正确答案:[-1,2]反思:由于空集是一个特殊的集合,它是任何集合的子集,因此对于集合就有可能忽视了,导致解题结果错误。尤其是在解含参数的集合问题时,更应注意到当参数在某个范围内取值时,所给的集合可能是空集的情况。考生由于思维定式的原因,往往会在解题中遗忘了这个集合,导致答案错误或答案不全面。易错点3在解含参数问题时忽视元素的互异性【问题】:已知1∈{,,},求实数的值。错解:剖
3、析:忽视元素的互异性,其实当时,==1;当时,==1;均不符合题意。正确答案:反思:集合中的元素具有确定性、互异性、无序性,集合元素的三性中的互异性对解题的影响最大,特别是含参数的集合,实际上就隐含着对字母参数的一些要求。解题时可先求出字母参数的值,再代入验证。易错点4命题的否定与否命题关系不明【问题】:写出“若,则”的否命题。错解一:否命题为“若,则”剖析:概念模糊,弄错两类命题的关系。错解二:否命题为“若,则”剖析:知识不完整,的否定形式应为。正确答案:若,则反思:命题的否定是命题的非命题,也就是“
4、保持原命题的条件不变,否定原命题的结论作为结论”所得的命题,但否命题是“否定原命题的条件作为条件,否定原命题的结论作为结论”所得的命题。对此。考生可能会犯两类错误①概念不清,不会对原命题的条件和结论作出否定;②审题不够细心。易错点5充分必要条件颠倒出错【问题】:已知是实数,则“且”是“且”的A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件错解:选B剖析:识记不好,不能真正理解充要条件概念,未能掌握判断充要条件的方法。正确答案:C反思:对于两个条件,如果,则是的充分条件,是的必要条
5、件,如果,则是的充要条件。判断充要条件常用的方法有①定义法;②集合法;③等价法。解题时最容易出错的就是颠倒了充分性与必要性,所以在解决这类问题时,一定要分清条件和结论,根据充要条件的定义,选择恰当的方法作出准确的判断,不充分不必要常借助反例说明。易错点6对逻辑联结词及其真值表理解不准【问题】:命题p:若a、b∈R,则是的充分而不必要条件;命题q:函数y=的定义域是(-∞,-1∪[3,+∞,则A“”为假B“”为真CD错解一:选或剖析:对真值表记忆不准,本题中,因此“”为真,而“”为假。错法二:选剖析:基础
6、不牢,在判断命题真假时出错。正确答案:D反思:含逻辑联结词“或”、“且”、“非”的命题称为复合命题。在判断复合命题真假时,常常因为对概念理解不准确或真值表记不清而出现错误。为此准确理解概念、巧记真值表是解题的关键。这里介绍一种快速记忆真值表的方法:“”——有真则真;“”——有假则假;“”——真假相反。易错点7否定全称、特称命题出错【问题】写出下列命题的否定::对任意的正整数x,;q:存在一个三角形,它的内角和大于;r:三角形只有一个外接圆。错解:①:对任意的正整数x,;②:所有的三角形的内角和小于;③存
7、在一个三角形有且只有一个外接圆。剖析:知识欠缺,基础不牢导致出错。正确答案:①:存在正整数x,使;②:所有的三角形的内角和都不大于;③存在一个三角形至少有两个外接圆。反思:全称命题,它的否定,特称命题,它的否定。一般来说,全称命题的否定是特称命题,特称命题的否定是全称命题。切记对全称、特称命题的否定,不仅要否定结论,而且还要对量词“”进行否定。另外,对一些省略了量词的简化形式,应先将命题写成完整形式,再依据法则来写出其否定形式。二、函数与导数易错点8求函数定义域时条件考虑不充分【问题】:求函数y=+的定
8、义域。错解:[-3,1]剖析:基础不牢,忽视分母不为零;误以为=1对任意实数成立。正确答案:反思:函数定义域是使函数有意义的自变量的取值范围,因此求定义域时就要根据函数解析式把各种情况下的自变量的限制条件找出来,列成不等式组,不等式组的解集就是该函数定义域。在求函数的定义域时应注意以下几点①分式的分母不为零;②偶次根式被开方式非负;③对数的真数大于零;④零的零次幂没有意义;⑤函数的定义域是非空的数集。易错点9求复合函数定义域时忽视“内层函数
此文档下载收益归作者所有