欢迎来到天天文库
浏览记录
ID:51622340
大小:1.13 MB
页数:65页
时间:2020-03-26
《市场调查与分析教学全套课件(夏学文)课件与题库 4.8掌握定量分析方法.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、市场调查与分析职业教育市场营销专业教学资源库建设项目单元六分析调查数据目录页CONTENTSPAGE6.3掌握定量分析方法DC060305D回归分析学习目标掌握数据分析的含义;能正确运用定性分析方法对不同数据进行分析;能正确运用不同的定量分析方法对不同数据进行分析。学习重点定性分析、定量分析6.1认识调查数据分析引言定量分析方法分类:根据研究的目的不同,可分为描述性分析和解析性分析。根据涉及的变量多少不同,可分为单变量统计分析、双变量统计分析和多变量统计分析。根据涉及的数列性质不同,可分为品质数列分析、变量数列分析、时间数列分析、空间数列分析、相关数列分
2、析、平衡数列分析。本教材主要讲述以下常用的定量分析方法。对调查数据的集中趋势分析是对被调查总体的特征进行准确描述的重要前提。集中趋势分析主要用平均指标进行描述。众数中位数算术平均数几何平均数调和平均数6.3.1数据集中趋势分析DC060303S数据集中趋势分析(1)简单算术平均数依据未分组的原始数据,将总体单位的标志值简单加总求和,除以总体单位数所得的结果为简单算术平均数。其计算公式为:式中,为算术平均数;为各单位的标志值;为总体单位数。6.3.1数据集中趋势分析1.算术平均数【例6-1】5名工人日产零件数为12、13、14、14、15,则平均每人日产量
3、为:6.3.1数据集中趋势分析(2)加权算术平均数原始资料按照数量标志分组,编成变量数列,将各组的标志值乘以相应的次数(权数),然后再加总求和,再除以总次数(总体单位数)所得到的结果为加权算术平均数。其计算公式为:6.3.1数据集中趋势分析【例6-2】某企业工人的生产情况如表6-2所示:日产量/件人数20121422623824122510267272合计50表6-2某企业工人日产量分布表6.3.1数据集中趋势分析则其平均日产量为:例6-2是根据单项式数列计算加权算术平均数,如果已知资料为组距数列,可用组中值代表各组标志值计算平均数。6.3.1数据集中趋
4、势分析【例6-3】某企业员工的月工资资料如表6-3所示:月工资/元人数X组中值fxf2500以下402250900002500~30008027502200003000~350012032503900003500~400015037505625004000~45007042502975004500以上404750190000合计500—1750000表6-3某企业员工的月工资数据资料表则该企业员工的月平均工资为:6.3.1数据集中趋势分析调和平均数是对变量值的倒数求得的平均数,又称倒数平均数,其又可以分为简单调和平均数和加权调和平均数两种。式中,为算术平
5、均数;为变量值的个数。【例6-4】某种蔬菜价格早晨为1元/千克,中午为0.8元/千克,晚上为0.5元/千克。若某人早晨、中午、晚上各买1元钱的该种蔬菜,则某人一天中买菜的平均价格为:(1)简单调和平均数6.3.1数据集中趋势分析2.调和平均数(2)加权调和平均数加权调和平均数是各单位标志值倒数的加权算术平均数的倒数,以表示各项权数,其计算公式为:6.3.1数据集中趋势分析【例6-5】某种蔬菜价格早晨为1元/千克,中午为0.8元/千克,晚上为0.5元/千克。若某人早晨、中午、晚上分别买2元、3元、4元钱的该种蔬菜,则某人一天中买菜的平均价格为:6.3.1数
6、据集中趋势分析3.几何平均数几何平均数是n个变量值连乘积的n次方根。因为几何平均数的特征与社会经济现象发展的平均速度和平均比率的客观过程相一致,因此,它适用于计算平均速度和平均比率。(1)简单几何平均数简单几何平均数是n个标志值乘积的n次方根。其计算公式为:6.3.1数据集中趋势分析【例6-6】某流水线有前后衔接的五道工序。某日各道工序的合格率分别为95%、92%、90%、85%、80%,则整个流水线的平均合格率为:6.3.1数据集中趋势分析(2)加权几何平均数对于分组资料,且各组变量值出现的次数(权数)不相等时应采用加权几何平均数,其计算公式为:6.3
7、.1数据集中趋势分析【例6-7】某地区25年的年经济增长速度分别是;1年3%、4年5%、8年8%10年10%、2年15%,则该地区经济的平均年增长速度为:6.3.1数据集中趋势分析中位数是指将总体各单位的标志值由小到大排列,处在中间位置的那个标志值,用Me表示。中位数把全部标志值等分为两个部分,一半标志值比它小,一半标志值比它大。当平均值不易计算时,可用中位数代表总体的一般水平。6.3.1数据集中趋势分析3.中位数6.3.1数据集中趋势分析中位数:也就是选取中间的数。一种衡量集中趋势的方法。要确定中位数第一步,首先需要从小到大排序。例如这组数据:23、2
8、9、20、32、23、21、33、25;我们将数据排序20、21、23、23、2
此文档下载收益归作者所有