欢迎来到天天文库
浏览记录
ID:51356448
大小:765.50 KB
页数:26页
时间:2020-03-22
《2012年北京市中考数学试卷.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!2012年北京市中考数学试卷 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!2012年北京市中考数学试卷 一、选择题(每小题4分,共32分)1.(2012•北京)﹣9的相反数是( ) A.﹣B.C.﹣9D.92.(2012•北京)首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60110000000美元.将60110000000用科学记数法表示应为( ) A.6.011×109B.60.11×109C.6.011×1010D.0.6011×10113.(2012•北京)正十边形的每个外角等于( ) A.18°B.36°C.45°D.60°4.(2012•北京)右图是某个几何体的三视图,该几何体是( ) A.长方体B.正方体C.圆柱D.三棱柱5.(2012•北京)班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英从中随机抽取一份奖品,恰好取到科普读物的概率是( ) A.B.C.D.6.(2012•北京)如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于( ) A.38°B.104°C.142°D.144°7.(2012•北京)某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示:用电量(度)120140160180200户数23672 A.180,160B.160,180C.160,160D.180,1808.(2012•北京)小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个个定位置可能是图1中的( ) 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入! A.点MB.点NC.点PD.点Q二、填空题(每小题4分,共16分)9.(2012•北京)分解因式:mn2+6mn+9m= _________ .10.(2012•北京)若关于x的方程x2﹣2x﹣m=0有两个相等的实数根,则m的值是 _________ .11.(2012•北京)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB= _________ m.12.(2012•北京)在平面直角坐标系xOy中,我们把横、纵坐标都是正数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是 _________ ;当点B的横坐标为4n(n为正整数)时,m= _________ (用含n的代数式表示).三、解答题(每小题5分,共30分)13.(2012•北京)计算:(π﹣3)0+﹣2sin45°﹣()﹣1.14.(2012•北京)解不等式组:.15.(2012•北京)已知,求代数式的值.16.(2012•北京)已知:如图,点E,A,C在同一直线上,AB∥CD,AB=CE,AC=CD. 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!求证:BC=ED.17.(2012•北京)如图在平面直角坐标系xOy中,函数y=(x>0)的图象与一次函数y=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,直接写出P点的坐标.18.(2012•北京)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量.四、解答题(每小题5分,共20分)19.(2012•北京)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=2.求CD的长和四边形ABCD的面积.20.(2012•北京)已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长. 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!21.(2012•北京)近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分.北京市轨道交通已开通线路相关数据统计表(截止2010年底)开通时间开通线路运营里程(千米)19711号线3119842号线23200313号线41八通线1920075号线2820088号线510号线25机场线2820094号线282010房山线22大兴线22亦庄线23昌平线2115号线20(1)补全条形统计图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营总里程将达到多少千米?(3)要按时完成截至2015年的轨道交通规划任务,从2011到2015年这4年中,平均每年需新增运营里程多少千米?22.(2012•北京)操作与探究:(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′. 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是 _________ ;若点B′表示的数是2,则点B表示的数是 _________ ;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是 _________ .(2)如图2,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.五、解答题(共22分,第23题7分,第24题7分,第25题8分)23.(2012•北京)已知二次函数y=(t+1)x2+2(t+2)x+在x=0和x=2时的函数值相等.(1)求二次函数的解析式;(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(﹣3,m),求m和k的值;(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位.请结合图象回答:当平移后的直线与图象G有公共点时,求n的取值范围.24.(2012•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数; 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.25.(2012•北京)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点).(1)已知点A(﹣,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标. 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!2012年北京市中考数学试卷参考答案与试题解析 一、选择题(每小题4分,共32分)1.(2012•北京)﹣9的相反数是( ) A.﹣B.C.﹣9D.9考点:相反数。710842分析:根据只有符号不同的两个数互为相反数解答.解答:解:﹣9的相反数是9.故选D.点评:本题考查了互为相反数的定义,是基础题,熟记概念是解题的关键.2.(2012•北京)首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60110000000美元.将60110000000用科学记数法表示应为( ) A.6.011×109B.60.11×109C.6.011×1010D.0.6011×1011考点:科学记数法—表示较大的数。710842分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:60110000000=6.011×1010,故选:C.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.(2012•北京)正十边形的每个外角等于( ) A.18°B.36°C.45°D.60°考点:多边形内角与外角。710842专题:常规题型。分析:根据正多边形的每一个外角等于多边形的外角和除以边数,计算即可得解.解答:解:360°÷10=36°,所以,正十边形的每个外角等于36°.故选B.点评:本题考查了正多边形的外角和、边数、外角度数之间的关系,熟记正多边形三者之间的关系是解题的关键.4.(2012•北京)右图是某个几何体的三视图,该几何体是( ) A.长方体B.正方体C.圆柱D.三棱柱 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!考点:由三视图判断几何体。710842分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为矩形判断出是锥体,根据俯视图是三角形可判断出这个几何体应该是三棱锥.故选D.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.5.(2012•北京)班主任王老师将6份奖品分别放在6个完全相同的不透明礼盒中,准备将它们奖给小英等6位获“爱集体标兵”称号的同学.这些奖品中3份是学习文具,2份是科普读物,1份是科技馆通票.小英从中随机抽取一份奖品,恰好取到科普读物的概率是( ) A.B.C.D.考点:概率公式。710842分析:根据根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率即可求出答案.解答:解:从中随机抽取一份奖品,恰好取到科普读物的概率是=.故选B.点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.6.(2012•北京)如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠BOD=76°,则∠BOM等于( ) A.38°B.104°C.142°D.144°考点:对顶角、邻补角;角平分线的定义。710842专题:常规题型。分析:根据对顶角相等求出∠AOC的度数,再根据角平分线的定义求出∠AOM的度数,然后根据平角等于180°列式计算即可得解.解答:解:∵∠BOD=76°,∴∠AOC=∠BOD=76°,∵射线OM平分∠AOC,∴∠AOM=∠AOC=×76°=38°,∴∠BOM=180°﹣∠AOC=180°﹣38°=142°.故选C.点评:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.7.(2012•北京)某课外小组的同学们在社会实践活动中调查了20户家庭某月的用电量,如表所示: 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!用电量(度)120140160180200户数23672 A.180,160B.160,180C.160,160D.180,180考点:众数;中位数。710842分析:根据众数和中位数的定义就可以解决.解答:解:在这一组数据中180是出现次数最多的,故众数是180;将这组数据从小到大的顺序排列后,处于中间位置的两个数是160,160,那么由中位数的定义可知,这组数据的中位数是(160+160)÷2=160.故选A.点评:本题为统计题,考查众数与中位数的意义.众数是一组数据中出现次数最多的数,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数.8.(2012•北京)小翔在如图1所示的场地上匀速跑步,他从点A出发,沿箭头所示方向经过点B跑到点C,共用时30秒.他的教练选择了一个固定的位置观察小翔的跑步过程.设小翔跑步的时间为t(单位:秒),他与教练的距离为y(单位:米),表示y与t的函数关系的图象大致如图2所示,则这个个定位置可能是图1中的( ) A.点MB.点NC.点PD.点Q考点:动点问题的函数图象。710842专题:应用题。分析:分别假设这个位置在点M、N、P、Q,然后结合函数图象进行判断.利用排除法即可得出答案.解答:解:A、假设这个位置在点M,则从A至B这段时间,y不随时间的变化改变,与函数图象不符,故本选项错误;B、假设这个位置在点N,则从A至B这段时间,y不随时间的变化改变,与函数图象不符,故本选项错误;C、,假设这个位置在点P,则由函数图象可得,从A到C的过程中,会有一个时刻,教练到小翔的距离等于经过30秒时教练到小翔的距离,而点P不符合这个条件,故本选项错误;D、经判断点Q符合函数图象,故本选项正确;故选D.点评:此题考查了动点问题的函数图象,解答本题要注意依次判断各点位置的可能性,点P的位置不好排除,同学们要注意仔细观察. 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!二、填空题(每小题4分,共16分)9.(2012•北京)分解因式:mn2+6mn+9m= m(n+3)2 .考点:提公因式法与公式法的综合运用。710842分析:先提取公因式m,再对余下的多项式利用完全平方公式继续分解.解答:解:mn2+6mn+9m=m(n2+6n+9)=m(n+3)2.故答案为:m(n+3)2.点评:本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.10.(2012•北京)若关于x的方程x2﹣2x﹣m=0有两个相等的实数根,则m的值是 ﹣1 .考点:根的判别式。710842分析:根据方程有两个相等的实数根,判断出根的判别式为0,据此求出m的值即可.解答:解:∵关于x的方程x2﹣2x﹣m=0有两个相等的实数根,∴△=0,∴(﹣2)2﹣4×1×(﹣m)=0,解得m=﹣1.点评:本题考查了一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.11.(2012•北京)如图,小明同学用自制的直角三角形纸板DEF测量树的高度AB,他调整自己的位置,设法使斜边DF保持水平,并且边DE与点B在同一直线上.已知纸板的两条直角边DE=40cm,EF=20cm,测得边DF离地面的高度AC=1.5m,CD=8m,则树高AB= 5.5 m.考点:相似三角形的应用。710842分析:利用直角三角形DEF和直角三角形BCD相似求得BC的长后加上小明同学的身高即可求得树高AB.解答:解:∵∠DEF=∠BCD=90°∠D=∠D∴△DEF∽△DCB∴=∵DE=40cm=0.4m,EF=20cm=0.2m,AC=1.5m,CD=8m,∴=∴BC=4,∴AB=AC+BC=1.5+4=5.5米,故答案为5.5 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!点评:本题考查了相似三角形的应用,解题的关键是从实际问题中整理出相似三角形的模型.12.(2012•北京)在平面直角坐标系xOy中,我们把横、纵坐标都是正数的点叫做整点.已知点A(0,4),点B是x轴正半轴上的整点,记△AOB内部(不包括边界)的整点个数为m.当m=3时,点B的横坐标的所有可能值是 3或4 ;当点B的横坐标为4n(n为正整数)时,m= 6n﹣3 (用含n的代数式表示).考点:点的坐标。710842专题:规律型。分析:根据题意画出图形,再找出点B的横坐标与△AOB内部(不包括边界)的整点m之间的关系即可求出答案.解答:解:如图:当点B在(3,0)点或(4,0)点时,△AOB内部(不包括边界)的整点为(1,1)(1,2)(2,1),共三个点,所以当m=3时,点B的横坐标的所有可能值是3或4;因为△AOB内部(不包括边界)的整点个数=[(点B的横坐标﹣1)×(点A的纵坐标﹣1)﹣3]÷2,所以当点B的横坐标为4n(n为正整数)时,m=[(4n﹣1)×(4﹣1)﹣3]÷2=6n﹣3;故答案为:3或4,6n﹣3.点评:此题考查了点的坐标,关键是根据题意画出图形,找出点B的横坐标与△AOB内部(不包括边界)的整点m之间的关系,考查数形结合的数学思想方法.三、解答题(每小题5分,共30分)13.(2012•北京)计算:(π﹣3)0+﹣2sin45°﹣()﹣1.考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值。710842专题:计算题。分析:分别根据零指数幂、二次根式的化简、负整数指数幂的运算,得出各部分的最简值,继而合并可得出答案.解答:解:原式=1+3﹣2×﹣8=﹣7+2.点评:此题考查了实数的运算,掌握零指数幂、负整数幂的运算法则是关键,另外要求我们熟练记忆一些特殊角的三角函数值.14.(2012•北京)解不等式组:. 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!考点:解一元一次不等式组;不等式的性质;解一元一次不等式。710842专题:计算题。分析:根据不等式的性质求出不等式的解集,根据找不等式组解集的规律找出不等式组的解集即可.解答:解:,∵解不等式①得:x>1,解不等式②得:x>5,∴不等式组的解集为:x>5.点评:本题考查了不等式的性质,解一元一次不等式(组)的应用,解此题的关键是根据找不等式组解集的规律找出不等式组的解集.15.(2012•北京)已知,求代数式的值.考点:分式的化简求值。710842专题:计算题。分析:将所求式子第一个因式的分母利用平方差公式分解因式,约分后得到最简结果,然后由已知的等式用b表示出a,将表示出的a代入化简后的式子中计算,即可得到所求式子的值.解答:解:•(a﹣2b)=•(a﹣2b)=,∵=≠0,∴a=b,∴原式====.点评:此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式,约分时分式的分子分母出现多项式,应将多项式分解因式后再约分.16.(2012•北京)已知:如图,点E,A,C在同一直线上,AB∥CD,AB=CE,AC=CD.求证:BC=ED.考点:全等三角形的判定与性质。710842专题:证明题。分析:首先由AB∥CD,根据平行线的性质可得∠BAC=∠ECD,再有条件AB=CE,AC=CD可证出△BAC和△ECD全等,再根据全等三角形对应边相等证出CB=ED. 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!解答:证明:∵AB∥CD,∴∠BAC=∠ECD,在△BAC和△ECD中,∴△BAC≌△ECD(SAS),∴CB=ED.点评:此题主要考查了全等三角形的判定与性质,全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件.17.(2012•北京)如图在平面直角坐标系xOy中,函数y=(x>0)的图象与一次函数y=kx﹣k的图象的交点为A(m,2).(1)求一次函数的解析式;(2)设一次函数y=kx﹣k的图象与y轴交于点B,若点P是x轴上一点,且满足△PAB的面积是4,直接写出P点的坐标.考点:反比例函数与一次函数的交点问题。710842专题:计算题。分析:(1)将A点坐标代入y=(x>0),求出m的值为2,再将(2,2)代入y=kx﹣k,求出k的值,即可得到一次函数的解析式;(2)将三角形以x轴为分界线,分为两个三角形计算,再把它们相加.解答:解:(1)将A(m,2)代入y=(x>0)得,m=2,则A点坐标为A(2,2),将A(2,2)代入y=kx﹣k得,2k﹣k=2,解得k=2,则一次函数解析式为y=2x﹣2;(2)∵一次函数y=2x﹣2与x轴的交点为C(1,0),与y轴的交点为(0,﹣2),∴×2CP+×2CP=4,解得CP=2,则P点坐标为(3,0),(﹣1,0).点评:本题考查了反比例函数与一次函数的交点问题,求出函数解析式并熟悉点的坐标与图形的关系是解题的关键.18.(2012•北京)列方程或方程组解应用题:据林业专家分析,树叶在光合作用后产生的分泌物能够吸附空气中的一些悬浮颗粒物,具有滞尘净化空气的作用.已知一片银杏树叶一年的平均滞尘量比一片国槐树叶一年的平均滞尘量的2倍少4毫克,若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,求一片国槐树叶一年的平均滞尘量. 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!考点:分式方程的应用。710842分析:首先设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x﹣4)毫克,根据关键语句“若一年滞尘1000毫克所需的银杏树叶的片数与一年滞尘550毫克所需的国槐树叶的片数相同,”可得方程=,解方程即可得到答案,注意最后一定要检验.解答:解:设一片国槐树叶一年的平均滞尘量为x毫克,则一片银杏树叶一年的平均滞尘量为(2x﹣4)毫克,由题意得:=,解得:x=22,经检验:x=22是原分式方程的解.答:一片国槐树叶一年的平均滞尘量为22毫克.点评:此题主要考查了分式方程的应用,关键是弄清题意,找到题目中的关键语句,列出方程.列分式方程解应用题的一般步骤:设、列、解、验、答.必须严格按照这5步进行做题,规范解题步骤,另外还要注意完整性:如设和答叙述要完整,要写出单位等.四、解答题(每小题5分,共20分)19.(2012•北京)如图,在四边形ABCD中,对角线AC,BD交于点E,∠BAC=90°,∠CED=45°,∠DCE=30°,DE=,BE=2.求CD的长和四边形ABCD的面积.考点:勾股定理;含30度角的直角三角形;等腰直角三角形。710842分析:利用等腰直角三角形的性质得出EH=DH=1,进而得出再利用直角三角形中30°所对边等于斜边的一半得出CD的长,求出AC,AB的长即可得出四边形ABCD的面积.解答:解:过点D作DH⊥AC,∵∠CED=45°,DH⊥EC,DE=,∴EH=DH=1,又∵∠DCE=30°,∴HC=,DC=2,∵∠AEB=45°,∠BAC=90°,BE=2,∴AB=AE=2,∴AC=2+1+=3+,∴S四边形ABCD=×2×(3+)+×1×(3+)=.点评:此题主要考查了解直角三角形和三角形面积求法,根据已知构造直角三角形进而得出直角边的长度是解题关键. 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!20.(2012•北京)已知:如图,AB是⊙O的直径,C是⊙O上一点,OD⊥BC于点D,过点C作⊙O的切线,交OD的延长线于点E,连接BE.(1)求证:BE与⊙O相切;(2)连接AD并延长交BE于点F,若OB=9,sin∠ABC=,求BF的长.考点:切线的判定与性质;相似三角形的判定与性质;解直角三角形。710842专题:几何综合题。分析:(1)连接OC,先证明△OCE≌△OBE,得出EB⊥OB,从而可证得结论.(2)过点D作DH⊥AB,根据sin∠ABC=,可求出OD=6,OH=4,HB=5,然后由△ADH∽△AFB,利用相似三角形的性质得出比例式即可解出BF的长.解答:证明:(1)连接OC,∵OD⊥BC,∴OC=OB,CD=BD(垂径定理),∴△CDO≌△BDO,∴∠OCD=∠OBD,在△OCE和△OBE中,∵,∴△OCE≌△OBE,∴∠OBE=∠OCE=90°,即OB⊥BE,故可证得BE与⊙O相切.(2)过点D作DH⊥AB,∵△ODH∽△OBD, 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!∴==又∵sin∠ABC=,OB=9,∴OD=6,∴OH=4,HB=5,DH=2,又∵△ADH∽△AFB,∴=,=,∴FB=.点评:此题考查了切线的判定与性质、相似三角形的判定与性质,解答本题的关键是掌握切线的判定定理,在第二问的求解中,一定要注意相似三角形的性质的运用.21.(2012•北京)近年来,北京市大力发展轨道交通,轨道运营里程大幅增加,2011年北京市又调整修订了2010至2020年轨道交通线网的发展规划.以下是根据北京市轨道交通指挥中心发布的有关数据制作的统计图表的一部分.北京市轨道交通已开通线路相关数据统计表(截止2010年底)开通时间开通线路运营里程(千米)19711号线3119842号线23200313号线41八通线1920075号线2820088号线510号线25机场线2820094号线282010房山线22大兴线22亦庄线23昌平线2115号线20(1)补全条形统计图并在图中标明相应数据;(2)按照2011年规划方案,预计2020年北京市轨道交通运营总里程将达到多少千米?(3)要按时完成截至2015年的轨道交通规划任务,从2011到2015年这4年中,平均每年需新增运营里程多少千米? 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!考点:条形统计图;扇形统计图。710842分析:(1)根据表格所给数据即可得出:2009年运营路程为:2008年运营总路程+28求出即可;(2)根据扇形图得出:截止2010年已开通运营总路程占计划的百分比,进而得出答案;(3)根据截止2015年新增运营路程为:1000×36.7=367(千米);进而得出从2011到2015年这4年中,平均每年需新增运营里程.解答:解:(1)根据表格所给数据即可得出:2009年运营路程为:200+28=228,如图所示:(2)根据扇形图得出:截止2010年已开通运营总路程占计划的百分比,进而得出预计2020年北京市轨道交通运营总里程将达到:336÷33.6%=1000(千米);(3)根据截止2015年新增运营路程为:1000×36.7=367(千米);则从2011到2015年这4年中,平均每年需新增运营里程(367﹣36)÷4=82.75.点评:此题主要考查了扇形图与条形图综合应用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键,此题难度较大应注意认真读图.22.(2012•北京)操作与探究:(1)对数轴上的点P进行如下操作:先把点P表示的数乘以,再把所得数对应的点向右平移1个单位,得到点P的对应点P′. 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!点A,B在数轴上,对线段AB上的每个点进行上述操作后得到线段A′B′,其中点A,B的对应点分别为A′,B′.如图1,若点A表示的数是﹣3,则点A′表示的数是 0 ;若点B′表示的数是2,则点B表示的数是 3 ;已知线段AB上的点E经过上述操作后得到的对应点E′与点E重合,则点E表示的数是 .(2)如图2,在平面直角坐标系xOy中,对正方形ABCD及其内部的每个点进行如下操作:把每个点的横、纵坐标都乘以同一个实数a,将得到的点先向右平移m个单位,再向上平移n个单位(m>0,n>0),得到正方形A′B′C′D′及其内部的点,其中点A,B的对应点分别为A′,B′.已知正方形ABCD内部的一个点F经过上述操作后得到的对应点F′与点F重合,求点F的坐标.考点:坐标与图形变化-平移;数轴;正方形的性质;平移的性质。710842专题:应用题。分析:(1)根据题目规定,以及数轴上的数向右平移用加计算即可求出点A′,设点B表示的数为a,根据题意列出方程求解即可得到点B表示的数,设点E表示的数为b,根据题意列出方程计算即可得解;(2)先根据向上平移横坐标不变,纵坐标加,向右平移横坐标加,纵坐标不变求出平移规律,然后设点F的坐标为(x,y),根据平移规律列出方程组求解即可.解答:解:(1)点A′:﹣3×+1=﹣1+1=0,设点B表示的数为a,则a+1=2,解得a=3,设点E表示的数为b,则a+1=b,解得b=;故答案为:0,3,;(2)根据题意得,,解得,设点F的坐标为(x,y), 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!∵对应点F′与点F重合,∴x+=x,y+2=y,解得x=1,y=4,所以,点F的坐标为(1,4).点评:本题考查了坐标与图形的变化,数轴上点右边的总比左边的大的性质,读懂题目信息是解题的关键.五、解答题(共22分,第23题7分,第24题7分,第25题8分)23.(2012•北京)已知二次函数y=(t+1)x2+2(t+2)x+在x=0和x=2时的函数值相等.(1)求二次函数的解析式;(2)若一次函数y=kx+6的图象与二次函数的图象都经过点A(﹣3,m),求m和k的值;(3)设二次函数的图象与x轴交于点B,C(点B在点C的左侧),将二次函数的图象在点B,C间的部分(含点B和点C)向左平移n(n>0)个单位后得到的图象记为G,同时将(2)中得到的直线y=kx+6向上平移n个单位.请结合图象回答:当平移后的直线与图象G有公共点时,求n的取值范围.考点:二次函数综合题;解一元一次方程;根的判别式;一次函数图象上点的坐标特征;平移的性质。710842专题:计算题。分析:(1)把x=0和x=2代入得出关于t的方程,求出t即可;(2)把A的坐标代入抛物线,即可求出m,把A的坐标代入直线,即可求出k;(3)求出点B、C间的部分图象的解析式是y=﹣(x﹣3)(x+1),得出抛物线平移后得出的图象G的解析式是y=﹣(x﹣3+n)(x+1+n),﹣n﹣1≤x≤3﹣n,直线平移后的解析式是y=4x+6+n,若两图象有一个交点时,得出方程4x+6+n=﹣(x﹣3+n)(x+1+n)有两个相等的实数解,求出判别式△=6n=0,求出的n的值与已知n>0相矛盾,得出平移后的直线与抛物线有两个公共点,设两个临界的交点为(﹣n﹣1,0),(3﹣n,0),代入直线的解析式,求出n的值,即可得出答案.解答:(1)解:∵二次函数y=(t+1)x2+2(t+2)x+在x=0和x=2时的函数值相等,∴代入得:0+0+=4(t+1)+4(t+2)+,解得:t=﹣,∴二次函数的解析式是y=﹣x2+x+. 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!(2)解:把A(﹣3,m)代入y=﹣x2+x+得:m=﹣×(﹣3)2﹣3+=﹣6,即A(﹣3,﹣6),代入y=kx+6得:﹣6=﹣3k+6,解得:k=4,即m=﹣6,k=4.(3)解:由题意可知,点B、C间的部分图象的解析式是y=﹣(x﹣3)(x+1),﹣1≤x≤3,则抛物线平移后得出的图象G的解析式是y=﹣(x﹣3+n)(x+1+n),﹣n﹣1≤x≤3﹣n,此时直线平移后的解析式是y=4x+6+n,如果平移后的直线与平移后的二次函数相切,则方程4x+6+n=﹣(x﹣3+n)(x+1+n)有两个相等的实数解,即﹣x2﹣(n+3)x﹣n2﹣=0有两个相等的实数解,判别式△=[﹣(n+3)]2﹣4×(﹣)×(﹣n2﹣)=6n=0,即n=0,∵与已知n>0相矛盾,∴平移后的直线与平移后的抛物线不相切,∴结合图象可知,如果平移后的直线与抛物线有公共点,则两个临界的交点为(﹣n﹣1,0),(3﹣n,0),则0=4(﹣n﹣1)+6+n,n=,0=4(3﹣n)+6+n,n=6,即n的取值范围是:≤n≤6.点评:本题考查了二次函数和一次函数的性质,平移的性质,根的判别式等知识点的应用,通过做此题培养了学生的分析问题和解决问题的能力,题目综合性比较强,有一定的难度.24.(2012•北京)在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ. 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!(1)若α=60°且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,请补全图形,并写出∠CDB的度数;(2)在图2中,点P不与点B,M重合,线段CQ的延长线于射线BM交于点D,猜想∠CDB的大小(用含α的代数式表示),并加以证明;(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B,M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=QD,请直接写出α的范围.考点:旋转的性质;全等三角形的判定与性质;等腰三角形的性质;等边三角形的性质。710842分析:(1)利用图形旋转的性质以及等边三角形的判定得出△CMQ是等边三角形,即可得出答案;(2)首先利用已知得出△APD≌△CPD,进而得出∠PAD+∠PQD=∠PQC+∠PQD=180°,即可求出;(3)由(2)得出∠CDB=90°﹣α,且PQ=QD,进而得出∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α,得出α的取值范围即可.解答:解:(1)∵BA=BC,∠BAC=60°,M是AC的中点,∴BM⊥AC,AM=MC,∵将线段PA绕点P顺时针旋转2α得到线段PQ,∴AM=MQ,∠AMQ=120°,∴CM=MQ,∠CMQ=60°,∴△CMQ是等边三角形,∴∠ACQ=60°,∴∠CDB=30°;(2)连接PC,AD,∵AB=BC,M是AC的中点,∴BM⊥AC,∴AD=CD,AP=PC,PD=PD,在△APD与△CPD中,∵,∴△APD≌△CPD,∴AP=PC,∠ADB=∠CDB,∠PAD=∠PCD,又∵PQ=PA,∴PQ=PC,∠ADC=2∠CDB,∠PQC=∠PCD=∠PAD,∴∠PAD+∠PQD=∠PQC+∠PQD=180°,∴∠APQ+∠ADC=360°﹣(∠PAD+∠PQD)=180°,∴∠ADC=180°﹣∠APQ=180°﹣2α,∴2∠CDB=180°﹣2α,∴∠CDB=90°﹣α;(3)∵∠CDB=90°﹣α,且PQ=QD,∴∠PAD=∠PCQ=∠PQC=2∠CDB=180°﹣2α, 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!∵点P不与点B,M重合,∴∠BAD>∠PAD>∠MAD,∴2α>180°﹣2α>α,∴45°<α<60°.点评:此题主要考查了旋转的性质以及全等三角形的判定与性质,得出∠APQ+∠ADC=360°﹣(∠PAD+∠PQD)=180°是解题关键.25.(2012•北京)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|;若|x1﹣x2|<|y1﹣y2|,则点P1与点P2的“非常距离”为|y1﹣y2|.例如:点P1(1,2),点P2(3,5),因为|1﹣3|<|2﹣5|,所以点P1与点P2的“非常距离”为|2﹣5|=3,也就是图1中线段P1Q与线段P2Q长度的较大值(点Q为垂直于y轴的直线P1Q与垂直于x轴的直线P2Q交点).(1)已知点A(﹣,0),B为y轴上的一个动点,①若点A与点B的“非常距离”为2,写出一个满足条件的点B的坐标;②直接写出点A与点B的“非常距离”的最小值;(2)已知C是直线y=x+3上的一个动点,①如图2,点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②如图3,E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E与点C的坐标.考点:一次函数综合题。710842分析:(1)①根据点B位于y轴上,可以设点B的坐标为(0,y).由“非常距离”的定义可以确定|0﹣y|=2,据此可以求得y的值; 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!②∵|﹣﹣0|≥|0﹣2|,所以点P1与点P2的“非常距离”为②|﹣﹣0|=;(2)①设点C的坐标为(x0,x0+3).根据材料“若|x1﹣x2|≥|y1﹣y2|,则点P1与点P2的“非常距离”为|x1﹣x2|”知,C、D两点的“非常距离”的最小值为﹣x0=x0+2,据此可以求得点C的坐标;②当点E在过原点且与直线y=x+3垂直的直线上时,点C与点E的“非常距离”最小,即E(﹣,).解答思路同上.解答:解:(1)①∵B为y轴上的一个动点,∴设点B的坐标为(0,y).∵|﹣﹣0|=≠2,∴|0﹣y|=2,解得,y=2或y=﹣2;∴点B的坐标是(0,2)或(0,﹣2);②点A与点B的“非常距离”的最小值为;(2)①∵C是直线y=x+3上的一个动点,∴设点C的坐标为(x0,x0+3),∴﹣x0=x0+2,此时,x0=﹣,∴点C与点D的“非常距离”的最小值为:,此时C(﹣,);②E(﹣,).﹣﹣x0=x0+3﹣,解得,x0=﹣,则点C的坐标为(﹣,),最小值为1. 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!点评:本题考查了一次函数综合题.对于信息给予题,一定要弄清楚题干中的已知条件.本题中的“非常距离”的定义是正确解题的关键. 初三数学讨论组QQ群:259315766,欢迎中考考生、数学把关教师、家长加入!参与本试卷答题和审题的老师有:CJX;dbz1018;sd2011;星期八;lantin;zjx111;sks;caicl;sjzx;gbl210。(排名不分先后)菁优网2012年7月13日本资料仅限下载者本人学习或教研之用,未经菁优网授权,不得以任何方式传播或用于商业用途。
此文档下载收益归作者所有
举报原因
联系方式
详细说明
内容无法转码请点击此处