2019届高考数学仿真模拟练(二)文.docx

2019届高考数学仿真模拟练(二)文.docx

ID:51331112

大小:254.96 KB

页数:13页

时间:2020-03-21

2019届高考数学仿真模拟练(二)文.docx_第1页
2019届高考数学仿真模拟练(二)文.docx_第2页
2019届高考数学仿真模拟练(二)文.docx_第3页
2019届高考数学仿真模拟练(二)文.docx_第4页
2019届高考数学仿真模拟练(二)文.docx_第5页
资源描述:

《2019届高考数学仿真模拟练(二)文.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、仿真模拟练(二)一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.若纯虚数z满足(1-i)z=1+ai,则实数a等于(  )A.0  B.-1或1C.-1D.1解析:z===+i,∵z是纯虚数,∴1+a≠0且1-a=0,∴a=1.答案:D2.若全集U=R,集合A={x

2、x2-x-2≥0},B={x

3、log3(2-x)≤1},则A∩∁UB=(  )A.{x

4、x<2}B.{x

5、x<-1或x≥2}C.{x

6、x≥2}D.{x

7、x≤-1或x>2}解析:集合A={x

8、x2-x-2≥0}={x

9、x≤-1或x≥2},B={x

10、log3(2-x)≤1}={x

11、

12、-1≤x<2},则∁UB={x

13、x<-1或x≥2},所以A∩∁UB={x

14、x<-1或x≥2}.答案:B3.命题“∀x∈[-2,+∞),x+3≥1”的否定为(  )A.∃x0∈[-2,+∞),x0+3<1B.∃x0∈[-2,+∞),x0+3≥1C.∀x∈[-2,+∞),x+3<1D.∀x∈(-∞,-2),x+3≥1解析:根据全称命题的否定规则可知应选A.答案:A4.若将函数y=sin2x的图象向左平移个单位长度,则平移后的图象(  )A.关于点(-,0)对称B.关于直线x=-对称C.关于点(,0)对称D.关于直线x=对称解析:平移后的图象对应的函数解析式为y=sin(2x+),当x=时,y=

15、1,说明函数图象关于直线x=对称,故选D.答案:D5.设则a,b,c的大小关系是(  )A.a>c>bB.a>b>cC.c>a>bD.b>c>a解析:因为幂函数y=在(0,+∞)上单调递增,所以a==c.又因为指数函数y=在R上单调递减,所以b==c,所以a>c>b.答案:A6.设P是△ABC所在平面内一点,且满足

16、3--

17、=0,则△ABP与△ABC面积之比为(  )A.B.C.D.解析:如图所示,由平行四边形法则得3=+=,故P,O,D三点共线,即

18、AO

19、=

20、AD

21、=

22、AP

23、.因为S△AOB与S△APB等底,故S△AOB=S△APB,S△ABC=2S△AOB=3S△APB,即△ABP与△

24、ABC的面积比为.答案:C7.如图,在边长为1的正方形组成的网格中,画出一个几何体的三视图,则该几何体的体积是(  )A.9B.C.18D.27解析:由题中三视图可知该几何体是三棱锥,三棱锥的底面是斜边为6的等腰直角三角形,底面积是9,三棱锥的高为3,所以该三棱锥的体积是×9×3=9.答案:A8.如图甲所示的茎叶图为高三某班60名学生某次数学模拟考试的成绩,程序框图(图乙)中输入的ai为茎叶图中的学生成绩,则输出的m,n,k分别是(  )A.m=18,n=31,k=11B.m=18,n=33,k=9C.m=20,n=30,k=9D.m=20,n=29,k=11解析:根据程序框图,可知m表示

25、数学成绩ai<90的学生人数,则m=18;n表示数学成绩90≤ai≤120的学生人数,则n=33;k表示数学成绩ai>120的学生人数,则k=9,故选B.答案:B9.已知实数x,y满足:,若z=x+2y的最小值为-4,则实数a=(  )A.1B.2C.4D.8解析:作出不等式组表示的平面区域,如图中阴影部分所示,当直线z=x+2y经过点C(-a,)时,z取得最小值-4,所以-a+2·=-4,解得a=2,选B.答案:B10.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑ABCD中,AB⊥平面BCD,且BD⊥CD,AB=BD=CD,点P在棱AC上运动,设CP的长度为x,若△

26、PBD的面积为f(x),则f(x)的图象大致是(  )解析:如图,作PQ⊥BC于Q,作QR⊥BD于R,连接PR,则由鳖臑的定义知PQ∥AB,QR∥CD.设AB=BD=CD=1,则==,即PQ=,又===,所以QR=,所以PR===,所以f(x)==,故选A.答案:A11.在△ABC中,角A,B,C的对边分别是a,b,c,=a,a=2.若b∈[1,3],则c的最小值为(  )A.2    B.3C.2    D.2解析:由=a,得=a,即=sinC,tanC=.故cosC=.∴c2=b2-2b+12=(b-)2+9.∵b∈[1,3].∴当b=时,c取得最小值3.答案:B12.在平面直角坐标系

27、xOy中,点P为椭圆C:+=1(a>b>0)的下顶点,M,N在椭圆上,若四边形OPMN为平行四边形,α为直线ON的倾斜角,若α∈,则椭圆C的离心率的取值范围为(  )A.B.C.D.解析:因为OP在y轴上,在平行四边形OPMN中,MN∥OP,所以M、N两点的横坐标相等,纵坐标互为相反数,即M,N两点关于x轴对称,

28、MN

29、=

30、OP

31、=a,可设M(x,-y0),N(x,y0),由kON=kPM可得y0=.把点N的坐标代入椭圆

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。