欢迎来到天天文库
浏览记录
ID:51329703
大小:232.00 KB
页数:7页
时间:2020-03-21
《长丰县实验高中2015~2016学年第一学期高二年级数学(文.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、长丰县实验高中2015~2016学年第一学期高二年级数学(文科)教案项目内容课题1.3.1柱体、锥体、台体的表面积与体积(共1课时)修改与创新教学目标1.了解柱体、锥体、台体的表面积和体积计算公式(不要求记忆),提高学生的空间想象能力和几何直观能力,培养学生的应用意识,增加学生学习数学的兴趣.2.掌握简单几何体的体积与表面积的求法,提高学生的运算能力,培养学生转化、化归以及类比的能力.教学重、难点教学重点:了解柱体、锥体、台体的表面积和体积计算公式及其应用.教学难点:表面积和体积计算公式的应用.教学准备多媒体课件教学过程一、导入新课:被誉为世界七大奇迹之首的胡夫大金
2、字塔,在1889年巴黎埃菲尔铁塔落成前的四千多年的漫长岁月中,胡夫大金字塔一直是世界上最高的建筑物.在四千多年前生产工具很落后的中古时代,埃及人是怎样采集、搬运数量如此之多,每块又如此之重的巨石垒成如此宏伟的大金字塔,真是一个十分难解的谜.胡夫大金字塔是一个正四棱锥外形的建筑,塔底边长230米,塔高146.5米,你能计算建此金字塔用了多少石块吗?二、讲授新课:提出问题①在初中,我们已经学习了正方体和长方体的表面积,以及它们的展开图(图1),你知道上述几何体的展开图与其表面积的关系吗?正方体及其展开图(1)长方体及其展开图(2)图1②棱柱、棱锥、棱台也是由多个平面图形
3、围成的几何体,它们的展开图是什么?如何计算它们的表面积?③如何根据圆柱、圆锥的几何结构特征,求它们的表面积?④联系圆柱、圆锥的侧面展开图,你能想象圆台侧面展开图的形状,并且画出它吗?如果圆台的上、下底面半径分别是r′,r,母线长为l,你能计算出它的表面积吗?⑤圆柱、圆锥和圆台的表面积之间有什么关系?-7-活动:①学生讨论和回顾长方体和正方体的表面积公式.②学生思考几何体的表面积的含义,教师提示就是求各个面的面积的和.③让学生思考圆柱和圆锥的侧面展开图的形状.④学生思考圆台的侧面展开图的形状.⑤提示学生用动态的观点看待这个问题.讨论结果:①正方体、长方体是由多个平面图
4、形围成的几何体,它们的表面积就是各个面的面积的和.因此,我们可以把它们展成平面图形,利用平面图形求面积的方法,求立体图形的表面积.②棱柱的侧面展开图是平行四边形,其表面积等于围成棱柱的各个面的面积的和;棱锥的侧面展开图是由多个三角形拼接成的,其表面积等于围成棱锥的各个面的面积的和;棱台的侧面展开图是由多个梯形拼接成的,其表面积等于围成棱台的各个面的面积的和.③它们的表面积等于侧面积与底面积的和,利用它们的侧面展开图来求得它们的侧面积,由于底面是圆面,其底面积直接应用圆的面积公式即得.其中,圆柱的侧面展开图是矩形,圆锥的侧面展开图是扇形.我们知道,圆柱的侧面展开图是一
5、个矩形(图2).如果圆柱的底面半径为r,母线长为l,那么圆柱的底面面积为πr2,侧面面积为2πrl.因此,圆柱的表面积S=2πr2+2πrl=2πr(r+l).图2图3圆锥的侧面展开图是一个扇形(图3).如果圆锥的底面半径为r,母线长为l,那么它的表面积S=πr2+πrl=πr(r+l).点评:将空间图形问题转化为平面图形问题,是解决立体几何问题基本的、常用的方法.④圆台的侧面展开图是一个扇环(图4),它的表面积等于上、下两个底面的面积和加上侧面的面积,即S=π(r2+r′2+rl+r′l).图4⑤圆柱、圆锥、圆台侧面积的关系:圆柱和圆锥都可以看作是圆台退化而成的几
6、何体.圆柱可以看作是上下底面全等的圆台,圆锥可看作是上底面退化成一点的圆台,观察它们的侧面积,不难发现:S圆柱表=2πr(r+l)S圆台表=π(r1l+r2l+r12+r22)S圆锥表=πr(r+l).-7-从上面可以很清楚地看出圆柱和圆锥的侧面积公式都可以看作由圆台侧面积公式演变而来.提出问题①回顾长方体、正方体和圆柱的体积公式,你能将它们统一成一种形式吗?并依次类比出柱体的体积公式?②比较柱体、锥体、台体的体积公式:V柱体=Sh(S为底面积,h为柱体的高);V锥体=(S为底面积,h为锥体的高);V台体=h(S′,S分别为上、下底面积,h为台体的高).你能发现三者
7、之间的关系吗?柱体、锥体是否可以看作“特殊”的台体?其体积公式是否可以看作台体体积公式的“特殊”形式?活动:①让学生思考和讨论交流长方体、正方体和圆柱的体积公式.②让学生类比圆柱、圆锥和圆台的表面积的关系?讨论结果:①棱长为a的正方体的体积V=a3=a2a=Sh;长方体的长、宽和高分别为a,b,c,其体积为V=abc=(ab)c=Sh;底面半径为r高为h的圆柱的体积是V=πr2h=Sh,可以类比,一般的柱体的体积也是V=Sh,其中S是底面面积,h为柱体的高.圆锥的体积公式是V=(S为底面面积,h为高),它是同底等高的圆柱的体积的.棱锥的体积也是同底等高的棱柱体积
此文档下载收益归作者所有