八数上(RJ)--1.配套精品教学教案15.3 第2课时 分式方程的应用.ppt

八数上(RJ)--1.配套精品教学教案15.3 第2课时 分式方程的应用.ppt

ID:51325551

大小:1.35 MB

页数:30页

时间:2020-03-22

八数上(RJ)--1.配套精品教学教案15.3 第2课时 分式方程的应用.ppt_第1页
八数上(RJ)--1.配套精品教学教案15.3 第2课时 分式方程的应用.ppt_第2页
八数上(RJ)--1.配套精品教学教案15.3 第2课时 分式方程的应用.ppt_第3页
八数上(RJ)--1.配套精品教学教案15.3 第2课时 分式方程的应用.ppt_第4页
八数上(RJ)--1.配套精品教学教案15.3 第2课时 分式方程的应用.ppt_第5页
资源描述:

《八数上(RJ)--1.配套精品教学教案15.3 第2课时 分式方程的应用.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、15.3分式方程第十五章分式优翼课件导入新课讲授新课当堂练习课堂小结第2课时分式方程的应用八年级数学上(RJ)教学课件学习目标1.理解数量关系正确列出分式方程.(难点)2.在不同的实际问题中能审明题意设未知数,列分式方程解决实际问题.(重点)导入新课问题引入1.解分式方程的基本思路是什么?2.解分式方程有哪几个步骤?3.验根有哪几种方法?分式方程整式方程转化去分母一化二解三检验有两种方法:第一种是代入最简公分母;第二种代入原分式方程.通常使用第一种方法.4.我们现在所学过的应用题有哪几种类型?每种类型的基本公式是什么?基本上有4种:(1)行

2、程问题:路程=速度×时间以及它的两个变式;(2)数字问题:在数字问题中要掌握十进制数的表示法;(3)工程问题:工作量=工时×工效以及它的两个变式;(4)利润问题:批发成本=批发数量×批发价;批发数量=批发成本÷批发价;打折销售价=定价×折数;销售利润=销售收入一批发成本;每本销售利润=定价一批发价;每本打折销售利润=打折销售价一批发价,利润率=利润÷进价。讲授新课列分式方程解决工程问题一例1两个工程队共同参与一项筑路工程,甲队单独施工1个月完成总工程的三分之一,这时增加了乙队,两队又共同工作了半个月,总工程全部完成.哪个队的施工速度快?表格

3、法分析如下:工作时间(月)工作效率工作总量(1)甲队乙队等量关系:甲队完成的工作总量+乙队完成的工作总量=“1”设乙单独完成这项工程需要x天.解:设乙单独完成这项工程需要x个月.记工作总量为1,甲的工作效率是,根据题意得即方程两边都乘以6x,得解得x=1.检验:当x=1时,6x≠0.所以,原分式方程的解为x=1.由上可知,若乙队单独施工1个月可以完成全部任务,而甲队单独施工需3个月才可以完成全部任务,所以乙队的施工速度快.想一想:本题的等量关系还可以怎么找?甲队单独完成的工作总量+两队合作完成的工作总量=“1”此时表格怎么列,方程又怎么列呢

4、?工作时间(月)工作效率工作总量(1)甲单独两队合作设乙单独完成这项工程需要x天.则乙队的工作效率是甲队的工作效率是,合作的工作效率是.此时方程是:1表格为“3行4列”知识要点工程问题1.题中有“单独”字眼通常可知工作效率;2.通常间接设元,如××单独完成需x(单位时间),则可表示出其工作效率;4.解题方法:可概括为“321”,即3指该类问题中三量关系,如工程问题有工作效率,工作时间,工作量;2指该类问题中的“两个主人公”如甲队和乙队,或“甲单独和两队合作”;1指该问题中的一个等量关系.如工程问题中等量关系是:两个主人公工作总量之和=全部工

5、作总量.3.弄清基本的数量关系.如本题中的“合作的工效=甲乙两队工作效率的和”.抗洪抢险时,需要在一定时间内筑起拦洪大坝,甲队单独做正好按期完成,而乙队由于人少,单独做则超期3个小时才能完成.现甲、乙两队合作2个小时后,甲队又有新任务,余下的由乙队单独做,刚好按期完成.求甲、乙两队单独完成全部工程各需多少小时?解析:设甲队单独完成需要x小时,则乙队需要(x+3)小时,根据等量关系“甲工效×2+乙工效×甲队单独完成需要时间=1”列方程.做一做解:设甲队单独完成需要x小时,则乙队需要(x+3)小时.由题意得.解得x=6.经检验x=6是方程的解.

6、∴x+3=9.答:甲单独完成全部工程需6小时,乙单独完成全部工程需9小时.解决工程问题的思路方法:各部分工作量之和等于1,常从工作量和工作时间上考虑相等关系.例2朋友们约着一起开着2辆车自驾去黄山玩,其中面包车为领队,小轿车车紧随其后,他们同时出发,当面包车车行驶了200公里时,发现小轿车车只行驶了180公里,若面包车的行驶速度比小轿车快10km/h,请问面包车,小轿车的速度分别为多少km/h?0180200列分式方程解决行程问题二路程速度时间面包车小轿车200180x+10x分析:设小轿车的速度为x千米/小时面包车的时间=小轿车的时间等量

7、关系:列表格如下:解:设小轿车的速度为x千米/小时,则面包车速度为x+10千米/小时,依题意得解得x=90经检验,x=90是原方程的解,且x=90,x+10=100,符合题意.答:面包车的速度为100千米/小时,小轿车的速度为90千米/小时.注意两次检验:(1)是否是所列方程的解;(2)是否满足实际意义.做一做1.小轿车发现跟丢时,面包车行驶了200公里,小轿车行驶了180公里,小轿车为了追上面包车,他就马上提速,他们约定好在300公里的地方碰头,他们正好同时到达,请问小轿车提速多少km/h?0180200300解:设小轿车提速为x千米/小

8、时,依题意得解得x=30经检验,x=30是原方程的解,且x=30,符合题意.答:小轿车提速为30千米/小时.2.两车发现跟丢时,面包车行驶了200公里,小轿车行驶了180公里,小

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。