资源描述:
《圆的切线长定理课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、直线与圆的位置关系切线长定理·在经过圆外一点的切线上,这一点和切点之间的线段的长叫做这点到圆的切线长OPA思考:切线和切线长这两个概念有何区别?切线和切线长是两个不同的概念:1、切线是一条与圆相切的直线;2、切线长是线段的长,这条线段的两个端点分别是圆外一点和切点。切线和切线长OPAB比一比OABP思考:已知⊙O切线PA、PB,A、B为切点,把圆沿着直线OP对折,你能发现什么?12折一折请证明你所发现的结论。APOBPA=PB∠OPA=∠OPB证明:∵PA,PB与⊙O相切,点A,B是切点∴OA⊥PA,OB⊥PB即∠OAP=∠OBP=90°∵OA=
2、OB,OP=OP∴Rt△AOP≌Rt△BOP(HL)∴PA=PB∠OPA=∠OPB试用文字语言叙述你所发现的结论证一证PA、PB分别切⊙O于A、BPA=PB∠OPA=∠OPB从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。几何语言:反思:切线长定理为证明线段相等、角相等提供新的方法OPAB切线长定理APOB若连结两切点A、B,AB交OP于点M.你又能得出什么新的结论?并给出证明.OP垂直平分AB证明:∵PA,PB是⊙O的切线,点A,B是切点∴PA=PB∠OPA=∠OPB∴△PAB是等腰三角形,PM为顶角的平分线∴
3、OP垂直平分ABM试一试。PBAO(3)连结圆心和圆外一点(2)连结两切点(1)分别连结圆心和切点反思:在解决有关圆的切线长问题时,往往需要我们构建基本图形。想一想一、判断:(1)过任意一点总可以作圆的两条切线()(2)从圆外一点引圆的两条切线,它们的长相等。( )二、选择:如图所示,PA、PB、DE分别切⊙O于A、B、C,DE分别交PA,PB于D、E,已知P到⊙O的切线长为8CM,则ΔPDE的周长为()AA16cmD8cmC12cmB14cmABPDEOC练习(2)已知OA=3cm,OP=6cm,则∠APB=PABCMO60°(4)OP交⊙
4、O于M,则,ABOPAM=BM⌒⌒⊥牛刀小试(3)若∠APB=70°,则∠AOB=°110(1)若PA=4、PM=2,求圆O的半径OAOA=3例1、已知:P为⊙O外一点,PA、PB为⊙O的切线,A、B为切点,BC是直径。求证:AC∥OPPACBDO例题讲解探究:PA、PB是⊙O的两条切线,A、B为切点,直线OP交于⊙O于点D、E,交AB于C。BAPOCED(1)写出图中所有的垂直关系OA⊥PA,OB⊥PB,AB⊥OP(3)写出图中所有的全等三角形△AOP≌△BOP,△AOC≌△BOC,△ACP≌△BCP(4)写出图中所有的等腰三角形△ABP△AO
5、B(2)写出图中与∠OAC相等的角?图中有几组相等的线段?∠OAC=∠OBC=∠APC=∠BPC,OA=OB=OD=OE,PA=PB,AC=BC.ABC思考:如图是一张三角形的铁皮,如何在它上面截下一块圆形的用料,并且使圆的面积尽可能大呢?ABCDFE...┐与三角形各边都相切的圆叫做三角形的内切圆ABCI┐┐DEF三角形内切圆的圆心叫做三角形的内心这个三角形叫做圆的外切三角形三角形的内心就是三角形的三个内角角平分线的交点三角形的内心到三角形的三边的距离相等例2、已知,△ABC中,BC=14cm,AC=9cm,AB=13cm,它的内切圆分别和BC
6、、AC、AB切于点D、E、F,求AF、BD和CE的长。DBCEAF.o外接圆圆心:三角形三边垂直平分线的交点。外接圆的半径:交点到三角形任意一个顶点的距离。三角形外接圆三角形内切圆.o内切圆圆心:三角形三个内角平分线的交点。内切圆的半径:交点到三角形任意一边的垂直距离。AABBCC切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角。∵PA、PB分别切⊙O于A、B∴PA=PB,∠OPA=∠OPBOP垂直平分AB切线长定理为证明线段相等,角相等,弧相等,垂直关系提供了理论依据。必须掌握并能灵活应用。BAPOCE
7、D如图,从⊙O外一点P作⊙O的两条切线,分别切⊙O于A、B,在AB上任取一点C作⊙O的切线分别交PA、PB于D、E(1)若PA=2,则△PDE的周长为____;EOCBDPA42a70°若PA=a,则△PDE的周长为_____。(2)连结OD、OE,若∠P=40°,则∠DOE=_____;若∠P=k,∠DOE=___________度。例3.如图,△ABC中,∠C=90º,它的内切圆O分别与边AB、BC、CA相切于点D、E、F,且BD=12,AD=8,求⊙O的半径r.OEBDCAF练习2.如图,AB是⊙O的直径,AD、DC、BC是切线,点A、E、
8、B为切点,(1)求证:OD⊥OC(2)若BC=9,AD=4,求OB的长.OABCDE已知:△ABC中,∠ABC=50º,∠ACB=70º