欢迎来到天天文库
浏览记录
ID:51250970
大小:2.17 MB
页数:49页
时间:2020-03-20
《流动阻力和水头损失.ppt》由会员上传分享,免费在线阅读,更多相关内容在PPT专区-天天文库。
1、能源与机械工程系水力学C第4章流动阻力和水头损失10/2/2021【教学重点】1.实际流体的两种流动型态的判别;2.均匀流的基本方程;3.圆管层流与紊流的流速分布;4.沿程阻力系数及沿程水头损失的计算;5.局部水头损失的计算。沿程损失与局部损失的特征,当量粗糙度、当量直径的概念,紊流沿程阻力系数的计算10/2/2021第一节水头损失的概念及分类一、水流阻力与水头损失1.水头损失产生的原因:1)液体具有粘滞性;(内因)2)由于固体边界的影响,液流内部质点间产生相对运动。(外因)流速分布切应力分布uτy10/2/2021液体经过时的局部损失包括五段:进口、突
2、然放大、突然缩小、弯管和闸门。进口突然放大突然缩小弯管闸门10/2/20212、水头损失的分类沿程损失hf沿程都有并随沿程长度而增加的能量损失,称作沿程水头损失,常用hf表示。hf1hf2hf3hf410/2/2021流动急剧调整产生的流动阻力为局部阻力;局部损失总的水头损失为:进口突然放大突然缩小弯管闸门10/2/20211. 沿程水头损失2. 局部水头损失或或!关键是各种流动条件下无因次系数和的计算。二、能量损失的计算公式10/2/2021大量的实践表明,沿程损失的规律与流体运动状态密切相关,雷诺(Reynolds)通过大量实验研究后,发现实际流体运
3、动存在着两种不同的状态,即层流(laminarflow)和紊(湍)流(Turbulentflow)两种流动类型。两种流动类型中沿程损失规律大不相同。下面来介绍雷诺是如何发现流体运动的这两种流态的。第二节雷诺实验层流与紊流10/2/2021一、层流与紊流(LaminarandTurbulentflow)各液层之间毫不相混,这种分层有规律的流动-层流10/2/2021运动轨迹极不规则,各部分流体剧烈掺混-紊(湍)流10/2/2021OABD:流速由小到大。EDCAO:流速由大到小。二、与V之间的关系10/2/2021(1)在OA段,,。(2)在DE段,,(3
4、)在AD段,流动状态不稳定,为过渡区。10/2/202110/2/2021流体力学设备和热动雷诺数:临界雷诺数:对于圆管:三.流态的判别—雷诺数(Reynoldsnumber)10/2/2021=Re>Rek=500紊流明渠bhm10/2/2021【例4-1】已知:,,求:(1)判别流态;(2)求临界速度解:(1)(紊流)(2)=>10/2/202110/2/2021流体力学设备和热动四、紊流的成因10/2/2021层流受扰动后,当粘性的稳定作用起主导作用时,扰动就受到粘性的阻滞而衰减下来,层流就是稳定的。当扰动占上风时,粘性的稳定作用无法克服使扰动衰减
5、下来,于是扰动便变为紊流。因此,流动呈现何流动状态,取决于扰动的惯性作用和粘性的稳定作用相互斗争的结果。Hinze:紊流是一个相当熟悉的概念,但至今仍不能给出一个很好的定义,使其能评价其特征。杨本洛:对一个以不规则作为必要条件写出的现象,试图寻找它的规则的研究是永远不会成功的。为什么雷诺数可以作为判别流态的一般准则?10/2/2021雷诺数反映了惯性力和粘滞力的对比关系。10/2/2021轴向力的平衡:第四节圆管中的层流运动一、均匀流动方程式图3.1810/2/2021—称为水力坡度表明圆管均匀流中,切应力与半径成正比,在断面上按直线规律分布,轴线上为零
6、,在管壁上达最大值。10/2/20211、速度剖面显然,断面流速分布是以管中心线为轴的旋转抛物面。边界条件:r=r0,u=0。二、断面流速分布特征10/2/20212、断面最大速度(管轴上)3、平均流速4、沿程损失及沿程阻力系数10/2/20215、动能修正系数及动量修正系数6、动量修正系数10/2/2021【例4-2】已知:求:解:,cm/s,流态为层流,故有,10/2/2021紊流内部有着许许多多尺度不同的涡旋。这些涡旋都在围绕着通过自身的某一轴旋转的同时,还具有空间运动的随机性。紊流的宏观表现是各流层的流体质点相互掺混,流动极不规则,杂乱无章,即使
7、在同一空间点上,流体质点的速度、压强等物理量随时间呈一种不规则的随机变化特征,这种现象称为脉动或涨落(fluctuation)现象。第五节紊(湍)流的特征一、紊流运动的特征瞬时值、时均值、脉动值10/2/2021由于脉动的随机性,统计平均法是处理紊流流动的基本方法。统计平均法有时均法和体均法等。10/2/2021速度分量ux的时均值:同理,有其中,T为平均周期,比紊流的脉动周期大得多,而比流动的不恒定性的特征时间又小得多,随具体情况而定。脉动值:如果湍流流动中各物理量的时均值不随时间而变,仅仅是空间点的函数,可认为时均流动是恒定流动。紊流的瞬时运动总是非
8、恒定的,而平均运动可能是非恒定的,也可能是恒定的。但紊流从本质上来说是非恒定的。
此文档下载收益归作者所有