神奇的莫比乌斯圈.doc

神奇的莫比乌斯圈.doc

ID:51002756

大小:121.50 KB

页数:5页

时间:2020-03-17

神奇的莫比乌斯圈.doc_第1页
神奇的莫比乌斯圈.doc_第2页
神奇的莫比乌斯圈.doc_第3页
神奇的莫比乌斯圈.doc_第4页
神奇的莫比乌斯圈.doc_第5页
资源描述:

《神奇的莫比乌斯圈.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、神奇的莫比乌斯圈一、引入课题:两个剪纸游戏1、游戏一 :你能把一张纸剪成两张吗?  找一张旧报纸,用剪刀把报纸剪出一张5厘米宽的纸条,把纸条的一头翻个面,然后和另一头粘在一起,形成一个扭曲的纸圈。沿着5厘米宽的纸圈的中心线把纸圈剪开,你能剪出两个纸圈吗?剪完一圈,你会发现纸圈还是一个,不过比原纸圈长了一倍。这种扭曲的纸圈有一个奇妙的特点,它只有一个面,也就是没有正反面,这种纸圈在拓扑学上叫莫比乌斯圈。如果我们再剪一次,会发生什么事情呢?现在这个纸环已经是不是单侧曲面了,所以剪开以后应该至少出现两个环。问题是,那会是怎么样的两

2、个环呢?结果是两个和刚才一样的纸环,不过这两个纸环是套在一起的。2、游戏二 :换个地方剪,你能剪出和上面一样的纸圈吗?  还是按上面说过的方法做一个摩比乌斯圈,用剪刀从靠纸边上三分之一的地方剪开。从头剪到尾,一直保持离纸边相同的距离。这样剪的结果会是一个比原纸圈长一倍的纸圈和一个与原纸圈同样大的纸圈套在一起,真是有意思极了,这一点你恐怕没有想到吧。二、莫比乌斯圈 1、简介公元1858年,德国数学家莫比乌斯(Mobius,1790~1868)和约翰·李斯丁发现:把一根纸条扭转180°后,两头再粘接起来做成的纸带圈,具有魔术般的

3、性质。普通纸带具有两个面(即双侧曲面),一个正面,一个反面,两个面可以涂成不同的颜色;而这样的纸带只有一个面(即单侧曲面),一只小虫可以爬遍整个曲面而不必跨过它的边缘。这种纸带被称为“莫比乌斯圈”。2、发现数学上流传着这样一个故事:有人曾提出,先用一张长方形的纸条,首尾相粘,做成一个纸圈,然后只允许用一种颜色,在纸圈上的一面涂抹,最后把整个纸圈全部抹成一种颜色,不留下任何空白。这个纸圈应该怎样粘?如果是纸条的首尾相粘做成的纸圈有两个面,势必要涂完一个面再重新涂另一个面,不符合涂抹的要求,能不能做成只有一个面、一条封闭曲线做边

4、界的纸圈儿呢? 对于这样一个看来十分简单的问题,数百年间,曾有许多科学家进行了认真研究,结果都没有成功。后来,德国的数学家莫比乌斯对此发生了浓厚兴趣,他长时间专心思索、试验,也毫无结果。    有一天,他被这个问题弄得头昏脑涨了,便到野外去散步。新鲜的空气,清凉的风,使他顿时感到轻松舒适,但他头脑里仍然只有那个尚未找到的圈儿。  一片片肥大的玉米叶子,在他眼里变成了“绿色的纸条儿”,他不由自主地蹲下去,摆弄着、观察着。叶子弯曲着耸拉下来,有许多扭成半圆形的,他随便撕下一片,顺着叶子自然扭的方向对接成一个圆圈儿,他惊喜地发现,

5、这“绿色的圆圈儿”就是他梦寐以求的那种圆圈。    莫比乌斯回到办公室,裁出纸条,把纸的一端扭转180°,再将一端的正面和背面粘在一起,这样就做成了只有一个面的纸圈儿。圆圈做成后,麦比乌斯捉了一只小甲虫,放在上面让它爬。结果,小甲虫不翻越任何边界就爬遍了圆圈儿的所有部分。麦比乌斯激动地说:“公正的小甲虫,你无可辩驳地证明了这个圈儿只有一个面。” 莫比乌斯圈就这样被发现了。   3、相关结论 做几个简单的实验,就会发现“莫比乌斯圈”有许多让我们感到惊奇而有趣的结果。实验一 : 如果在裁好的一张纸条正中间画一条线,粘成“莫比乌斯

6、圈”,再沿线剪开,把这个圈一分为二,照理应得到两个圈儿,奇怪的是,剪开后竟是一个大圈儿。   实验二:如果在纸条上划两条线,把纸条三等分,再粘成“莫比乌斯圈”,用剪刀沿画线剪开,剪刀绕两个圈竟然又回到原出发点,猜一猜,剪开后的结果是什么,是一个大圈?还是三个圈儿?都不是。它究竟是什么呢?你自己动手做这个实验就知道了。你就会惊奇地发现,纸带一分为二,一大一小的相扣环。    奇妙之处有三:   ①莫比乌斯环只存在一个面。    ②如果沿着莫比乌斯环的中间剪开,将会形成一个比原来的麦比乌斯环空间大一倍的、具有正反两个面的环(在本

7、文中将之编号为:环0),而不是形成两个麦比乌斯环或两个其它形式的环。    ③如果再沿着环0的中间剪开,将会形成两个与环0空间一样的、具有正反两个面的环,且这两个环是相互套在一起的(在本文中将之编号为:环1和环2),从此以后再沿着环1和环2以及因沿着环1和环2中间剪开所生成的所有环的中间剪开,都将会形成两个与环0空间一样的、具有正反两个面的环,永无止境……且所生成的所有的环都将套在一起,永远无法分开、永远也不可能与其它的环不发生联系而独立存在。  4、应用数学中有一个重要分支叫拓扑学,主要是研究几何图形连续改变形状时的一些特

8、征和规律的,麦比乌斯圈变成了拓扑学中最有趣的单侧面问题之一。麦比乌斯圈的概念被广泛地应用到了建筑,艺术,工业生产中。用麦比乌斯圈原理我们可以建造立交桥和道路,避免车辆行人的拥堵。   一、1979年,美国著名轮胎公司百路驰创造性地把传送带制成麦比乌斯圈形状,这样一来,整条传送带环面各处均匀

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。