资源描述:
《勾股定理课件高品质版.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯年希腊曾经发行了一枚纪念票。定理。为了纪念毕达哥拉斯学派,1955两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理。为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票。相传,毕达哥拉斯发现这一定理时,曾宰牛百头,广设盛宴,表示庆贺,对这个定理的重视可想而知。勾股定理的历史相传,一次毕达哥拉斯去朋友家作客,发现朋友家用砖铺成的地面反映直角三角形三边的某种数量关系。勾股定理的
2、历史我国是最早了解勾股定理的国家之一。早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中。勾股弦勾股定理:直角三角形两直角边的平方和等于斜边的平方。如果直角三角形两直角边分别为a、b,斜边为c,那么abc即:那么勾股定理是如何证明的呢?BAC448SA+SB=SCC图甲1.观察图甲,小方格的边长为1.⑴正方形A、B、C的面积各为多少?⑵正方形A、B、C的面积有什么关系?ABC图乙2.观察图
3、乙,小方格的边长为1.⑴正方形A、B、C的面积各为多少?91625SA+SB=SC⑵正方形A、B、C的面积有什么关系?448ABCSA+SB=SC图甲CAB图乙2.观察图乙,小方格的边长为1.91625SA+SB=SC⑵正方形A、B、C的面积有什么关系?448ABCSA+SB=SC图甲abcabcCABCC图乙SA+SB=SCSA+SB=SC图甲abcabc3.猜想a、b、c之间的关系?a2+b2=c23.猜想a、b、c之间的关系?a2+b2=c23.猜想a、b、c之间的关系?a2+b2=c2aaaabbbb
4、cccc用拼图法证明3.猜想a、b、c之间的关系?a2+b2=c2aaaabbbbcccc用拼图法证明3.猜想a、b、c之间的关系?a2+b2=c2aaaabbbbcccc用拼图法证明3.猜想a、b、c之间的关系?a2+b2=c2∵S大正方形=4×S直角三角形+S小正方形∴a2+b2=c2勾股定理如果直角三角形两直角边分别为a,b,斜边为c,那么即直角三角形两直角边的平方和等于斜边的平方.ac勾弦b股勾股定理的其它证法勾股定理是几何中一个非常重要的定理,自古以来人们进行了大量的长期的研究,目前世界上可查到的证
5、明方法有三百多种。我国有记载的最早勾股定理的证明,是三国时,我国古代数学家赵爽在他所著的《勾股圆方图注》中,用四个全等的直角三角形拼成一个中空的正方形来证明的。每个直角三角形的面积叫朱实,中间的正方形面积叫黄实,大正方形面积叫弦实,这个图也叫弦图。acbabc大正方形面积怎么求?赵爽弦图结论:美国第二十任总统伽菲尔德的证法在数学史上被传为佳话人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为“总统”证法。有趣的总统证法结论变形abcc2=a2+b2直角三角形两直角边的平方和等于斜边的平方。
6、结论:在直角三角形中,已知两边可以求第三边.例1在Rt△ABC中,BC=24,AC=7,求AB的长.B24AC7如果将题目变为:在Rt△ABC中,AB=41,BC=40,求AC的长呢?24∵Rt△ABC中,∠C是直角∴AC2+BC2=AB2∴八年级下册勾股定理----理解例题分析1.在Rt△ABC中,∠C=90°.(1)已知:a=6,b=8,求c;(2)已知:a=40,c=41,求b;(3)已知:c=13,b=5,求a;(4)已知:a:b=3:4,c=15,求a、b.(1)在直角三角形中,已知两边,可求第三边
7、;(2)可用勾股定理建立方程.方法小结常见勾股数试一试:2、已知:Rt△ABC中,AB=4,AC=3,则BC的长为.43ACB43CAB3、如图,折叠长方形的一边,使点D落在BC边上的点F处,若AB=8,AD=10.求:EC的长.1046810xEFDCBA8-x8-x利用勾股定理证明4、如图,△ABC中,CD⊥AB于D求证:AC2–BC2=AB·(AD-BD)CADB1、在Rt△ABC中,∠C=90°,(1)已知a=3,b=4,则c=______(2)已知a=6,c=10,则b=_____(3)已知a=2,
8、b=4,则c=______2、直角三角形的两条边长分别为5、12,则第三边长为.测验3、如图,折叠长方形的一边,使点D落在BC边上的点F处,若AB=8,AD=10.求:EC的长.1046810xEFDCBA8-x8-x4、如图,在△ABC中,AB=AC,D点在CB延长线上,求证:AD2-AB2=BD·CDABCD如图,在△ABC中,AB=AC,D点在CB延长线上,求证:AD2-AB2=BD·CDAB