欢迎来到天天文库
浏览记录
ID:50614338
大小:863.68 KB
页数:16页
时间:2020-03-12
《2021版高考数学一轮复习第八章立体几何第5讲直线、平面垂直的判定与性质教案文新人教A版.docx》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、第5讲 直线、平面垂直的判定与性质一、知识梳理1.直线与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直⇒l⊥α性质定理垂直于同一个平面的两条直线平行⇒a∥b2.平面与平面垂直的判定定理与性质定理文字语言图形语言符号语言判定定理一个平面过另一个平面的垂线,则这两个平面垂直⇒α⊥β性质定理两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直⇒l⊥α3.直线与平面所成的角(1)定义:平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所
2、成的角,如图,∠PAO就是斜线AP与平面α所成的角.(2)线面角θ的范围:θ∈.①直线垂直于平面,则它们所成的角是直角;②直线和平面平行或在平面内,则它们所成的角是0°的角;③当直线与平面斜交时,它们所成的角是锐角.常用结论1.与线面垂直相关的两个常用结论:(1)两平行线中的一条与平面垂直,则另一条也与这个平面垂直.(2)一条直线垂直于两平行平面中的一个,则与另一个平面也垂直.2.三种垂直关系的转化:线线垂直线面垂直面面垂直二、习题改编1.(必修2P72探究改编)已知互相垂直的平面α,β交于直线l.若直线m,n满足m∥α,n
3、⊥β,则( )A.m∥lB.m∥nC.n⊥lD.m⊥n解析:选C.由题意知,α∩β=l,所以l⊂β,因为n⊥β,所以n⊥l.2.(必修2P67练习T2改编)在三棱锥PABC中,点P在平面ABC中的射影为点O.(1)若PA=PB=PC,则点O是△ABC的心;(2)若PA⊥PB,PB⊥PC,PC⊥PA,则点O是△ABC的心.解析:(1)如图,连接OA,OB,OC,OP,在Rt△POA,Rt△POB和Rt△POC中,PA=PB=PC,所以OA=OB=OC,即O为△ABC的外心.(2)如图,延长AO,BO,CO分别交BC,AC,A
4、B于点H,D,G.因为PC⊥PA,PB⊥PC,PA∩PB=P,所以PC⊥平面PAB,又AB⊂平面PAB,所以PC⊥AB,因为AB⊥PO,PO∩PC=P,所以AB⊥平面PGC,又CG⊂平面PGC,所以AB⊥CG,即CG为△ABC边AB上的高.同理可证BD,AH分别为△ABC边AC,BC上的高,即O为△ABC的垂心.答案:(1)外 (2)垂一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)已知直线a,b,c,若a⊥b,b⊥c,则a∥c.( )(2)直线l与平面α内的无数条直线都垂直,则l⊥α.( )(3)设m,n是
5、两条不同的直线,α是一个平面,若m∥n,m⊥α,则n⊥α.( )(4)若两平面垂直,则其中一个平面内的任意一条直线垂直于另一个平面.( )(5)若平面α内的一条直线垂直于平面β内的无数条直线,则α⊥β.( )答案:(1)× (2)× (3)√ (4)× (5)×二、易错纠偏(1)证明线面垂直时,易忽视平面内两条直线为相交直线这一条件;(2)面面垂直的判定中找不到哪个面和哪条线垂直.1.(2020·安徽江南十校联考)已知m和n是两条不同的直线,α和β是两个不重合的平面,下面给出的条件中一定能推出m⊥β的是( )A.α⊥
6、β且m⊂αB.m⊥n且n∥βC.m∥n且n⊥βD.m⊥n且α∥β解析:选C.由线线平行性质的传递性和线面垂直的判定定理,可知C正确.2.(2020·辽宁大连第一次(3月)双基测试)已知直线l和平面α,β,且l⊂α,则“l⊥β”是“α⊥β”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析:选A.由面面垂直的判定定理可得,若l⊂α,l⊥β,则α⊥β,充分性成立;若l⊥β,α⊥β,则l⊂α或l∥α,必要性不成立,所以若l⊂α,则“l⊥β”是“α⊥β”的充分不必要条件,故选A. 线面垂
7、直的判定与性质(师生共研)(1)(2018·高考全国卷Ⅱ节选)如图,在三棱锥PABC中,AB=BC=2,PA=PB=PC=AC=4,O为AC的中点.证明:PO⊥平面ABC.(2)(2020·重庆市七校联合考试)如图,直三棱柱ABCA1B1C1的所有棱长都是2,D,E分别是AC,CC1的中点.求证:AE⊥平面A1BD.【证明】 (1)因为AP=CP=AC=4,O为AC的中点,所以OP⊥AC,且OP=2.连接OB.因为AB=BC=AC,所以△ABC为等腰直角三角形,且OB⊥AC,OB=AC=2.由OP2+OB2=PB2知,PO⊥
8、OB.由OP⊥OB,OP⊥AC知PO⊥平面ABC.(2)因为AB=BC=CA,D是AC的中点,所以BD⊥AC,因为直三棱柱ABCA1B1C1中,AA1⊥平面ABC,所以平面AA1C1C⊥平面ABC,所以BD⊥平面AA1C1C,所以BD⊥AE.又在正方形AA1C1C中,D,E分别是AC,CC
此文档下载收益归作者所有