初中数学竞赛重要定理整集.doc

初中数学竞赛重要定理整集.doc

ID:50608492

大小:312.50 KB

页数:15页

时间:2020-03-12

初中数学竞赛重要定理整集.doc_第1页
初中数学竞赛重要定理整集.doc_第2页
初中数学竞赛重要定理整集.doc_第3页
初中数学竞赛重要定理整集.doc_第4页
初中数学竞赛重要定理整集.doc_第5页
资源描述:

《初中数学竞赛重要定理整集.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、射影定理一、射影定理直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。公式Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)^2;=BD·DC,(2)(AB)^2;=BD·BC,(3)(AC)^2;=CD·BC。等积式(4)ABXAC=BCXAD(可用面积来证明)目录直角三角形射影定理的证明任意三角形射影定理 射影  所谓射影,就是正投影。直角三角形射影定理

2、(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。初中射影定理的内容:射影定理的内容是在直角三角形中,每条直角边是这条直角边在斜边的射影和斜边的比例中项,斜边上的高线是两条直角边在斜边射影的比例中项公式如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)²=BD·DC,(2)(AB)²=BD·BC,(3)(AC)²=CD·BC。等积式(4)A

3、BXAC=BCXAD(可用“面积法”来证明)直角三角形射影定理的证明  证明:    射影定理简图(几何画板)一、  在△BAD与△BCD中,∠A+∠C=90°,∠DBC+∠C=90°,∴∠A=∠DBC,  又∵∠BDA=∠BDC=90°,  ∴△BAD∽△CBD,  ∴AD/BD=BD/CD,即BD^2;=AD·DC。其余类似可证。(也可以用勾股定理证明)  注:由上述射影定理还可以证明勾股定理。  有射影定理如下:  AB^2;=AD`AC,BC^2;=CD·CA。  两式相加得:  AB^2;+BC^2;=

4、AD·AC+CD·AC=(AD+CD)·AC=AC^2;,  即AB^2;+BC^2;=AC^2;(勾股定理结论)。  二、  已知:三角形中角A=90度,AD是高.  用勾股证射影  :因为AD^2=AB^2-BD^2=AC^2-CD^2,  所以2AD^2=AB^2+AC^2-BD^2-CD^2=BC^2-BD^2-CD^2=(BD+CD)^2-(BD^2+CD^2)=2BD*CD.  故AD^2=BD*CD.  运用此结论可得:AB^2=BD^2+AD^2=BD^2+BD*CD=BD*(BD+CD)=BD*

5、BC,AC^2=CD^2+AD^2=CD^2+BD*CD=CD(BD+CD)=CD*CB.  综上所述得到射影定理。同样也可以利用三角形面积知识进行证明。任意三角形射影定理  任意三角形射影定理又称“第一余弦定理”:  △ABC的三边是a、b、c,它们所对的角分别是A、B、C,则有  a=b·cosC+c·cosB,  b=c·cosA+a·cosC,  c=a·cosB+b·cosA。  注:以“a=b·cosC+c·cosB”为例,b、c在a上的射影分别为b·cosC、c·cosB,故名射影定理。  证明1:

6、设点A在直线BC上的射影为点D,则AB、AC在直线BC上的射影分别为BD、CD,且  BD=c·cosB,CD=b·cosC,∴a=BD+CD=b·cosC+c·cosB.同理可证其余。      证明2:由正弦定理,可得:b=asinB/sinA,c=asinC/sinA=asin(A+B)/sinA=a(sinAcosB+cosAsinB)/sinA=acosB+(asinB/sinA)cosA=a·cosB+b·cosA.同理可证其它的。二、直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形

7、中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。公式如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:1.(AD)^2=BD·DC,2.(AB)^2=BD·BC,3.(AC)^2=CD·BC。这主要是由相似三角形来推出的,例如,“(AD)^2=BD·DC:”的证明如下:在△BAD与△ACD中,∠B=∠DAC,∠BDA=∠ADC=90°,△BAD∽△ACD相似,所以AD/BD=CD/AD,所以(AD)^2=BD·DC。注:由上述射

8、影定理还可以证明勾股定理。由公式(2)+(3)得(AB)^2+(AC)^2=(BC)^2,这就是勾股定理的结论。直角三角形射影定理(又叫欧几里德(Euclid)定理):直角三角形中,斜边上的高是两直角边在斜边上射影的比例中项。每一条直角边是这条直角边在斜边上的射影和斜边的比例中项。公式Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:(1)(AD)

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。