欢迎来到天天文库
浏览记录
ID:50587509
大小:429.50 KB
页数:25页
时间:2020-03-12
《选修2-3回归分析的基本思想及其初步应用(精华).ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、3.1回归分析的基本思想及其初步应用高二数学选修2-3问题1:正方形的面积y与正方形的边长x之间的函数关系是y=x2确定性关系问题2:某水田水稻产量y与施肥量x之间是否有一个确定性的关系?例如:在7块并排、形状大小相同的试验田上进行施肥量对水稻产量影响的试验,得到如下所示的一组数据:施化肥量x15202530354045水稻产量y330345365405445450455复习变量之间的两种关系1020304050500450400350300·······施化肥量x15202530354045水稻产量y3303453654054454504
2、55xy施化肥量水稻产量自变量取值一定时,因变量的取值带有一定随机性的两个变量之间的关系叫做相关关系。1、定义:1):相关关系是一种不确定性关系;注对具有相关关系的两个变量进行统计分析的方法叫回归分析。2):现实生活中存在着大量的相关关系。如:人的身高与年龄;产品的成本与生产数量;商品的销售额与广告费;家庭的支出与收入。等等探索:水稻产量y与施肥量x之间大致有何规律?1020304050500450400350300·······发现:图中各点,大致分布在某条直线附近。探索2:在这些点附近可画直线不止一条,哪条直线最能代表x与y之间的关系呢
3、?施化肥量x15202530354045水稻产量y330345365405445450455xy散点图施化肥量水稻产量探究对于一组具有线性相关关系的数据我们知道其回归方程的截距和斜率的最小二乘估计公式分别为:称为样本点的中心。1、所求直线方程叫做回归直线方程;相应的直线叫做回归直线。2、对两个变量进行的线性分析叫做线性回归分析。1、回归直线方程2、求回归直线方程的步骤:(3)代入公式(4)写出直线方程为y=bx+a,即为所求的回归直线方程。^例1、观察两相关量得如下数据:x-1-2-3-4-553421y-9-7-5-3-115379求两变
4、量间的回归方程.解:列表:i12345678910xi-1-2-3-4-553421yi-9-7-5-3-115379xiyi9141512551512149所求回归直线方程为假设随机误差对体重没有影响,也就是说,体重仅受身高的影响,那么散点图中所有的点将完全落在回归直线上。但是,在图中,数据点并没有完全落在回归直线上。这些点散布在回归直线附近。那么,数据点和它在回归直线上相应位置的差异是随机误差的效应,称为残差。表3-2列出了女大学生身高和体重的原始数据以及相应的残差数据。编号12345678身高/cm165165157170175165
5、155170体重/kg4857505464614359残差-6.3732.6272.419-4.6181.1376.627-2.8830.382(一)我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。3、残差分析:残差图的制作及作用1、坐标纵轴为残差变量,横轴可以有不同的选择;2、若模型选择的正确,残差图中的点应该分布在以横轴为心的带形区域;3、对于远离横轴的点,要特别注意。身高与体重残差图异常点错误数据模型问题表3-2列出了女大学生身高和体重的原始数据以及相应
6、的残差数据。编号12345678身高/cm165165157170175165155170体重/kg4857505464614359残差-6.3732.6272.419-4.6181.1376.627-2.8830.382(一)我们可以利用图形来分析残差特性,作图时纵坐标为残差,横坐标可以选为样本编号,或身高数据,或体重估计值等,这样作出的图形称为残差图。3、残差分析:(二)例2在一段时间内,某中商品的价格x元和需求量Y件之间的一组数据为:求出Y对的回归直线方程,并说明拟合效果的好坏。价格x1416182022需求量Y1210753列出残差
7、表为0.994因而,拟合效果较好。00.3-0.4-0.10.24.62.6-0.4-2.4-4.4例3关于x与y有如下数据:有如下的两个线性模型:(1);(2)试比较哪一个拟合效果更好。x24568y30406050707、一般地,建立回归模型的基本步骤为:(1)确定研究对象,明确哪个变量是解析变量,哪个变量是预报变量。(2)画出确定好的解析变量和预报变量的散点图,观察它们之间的关系(如是否存在线性关系等)。(3)由经验确定回归方程的类型(如我们观察到数据呈线性关系,则选用线性回归方程y=bx+a).(4)按一定规则估计回归方程中的参数(
8、如最小二乘法)。(5)得出结果后分析残差图是否有异常(个别数据对应残差过大,或残差呈现不随机的规律性,等等),过存在异常,则检查数据是否有误,或模型是否合适等。什么是回归分析?(
此文档下载收益归作者所有