高三数学第一轮复习课件:直线的倾斜角与斜率、直线的方程.ppt

高三数学第一轮复习课件:直线的倾斜角与斜率、直线的方程.ppt

ID:50567478

大小:952.50 KB

页数:24页

时间:2020-03-11

高三数学第一轮复习课件:直线的倾斜角与斜率、直线的方程.ppt_第1页
高三数学第一轮复习课件:直线的倾斜角与斜率、直线的方程.ppt_第2页
高三数学第一轮复习课件:直线的倾斜角与斜率、直线的方程.ppt_第3页
高三数学第一轮复习课件:直线的倾斜角与斜率、直线的方程.ppt_第4页
高三数学第一轮复习课件:直线的倾斜角与斜率、直线的方程.ppt_第5页
资源描述:

《高三数学第一轮复习课件:直线的倾斜角与斜率、直线的方程.ppt》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库

1、直线的倾斜角与斜率、直线的方程高三第一轮复习:①定义:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0°.知识梳理②倾斜角的范围为.1.直线的倾斜角与斜率(1)直线的倾斜角:例:直线l过原点,其倾斜角为,将直线l绕原点沿逆时针方向旋转,得到直线,则直线的倾斜角为.知识梳理1.直线的倾斜角与斜率(1)直线的倾斜角:①定义:当直线l与x轴相交时,我们取x轴作为基准,x轴正向与直线l向上方向之间所成的角α叫做直线l的倾斜角.当直线l与x轴平行或重合时,规定它的倾斜角为0°.②

2、倾斜角的范围为.?①定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即,倾斜角是90°的直线斜率不存在.知识梳理(2)直线的斜率:判断下列命题是否正确?1.任意一条直线有唯一的倾斜角,也有唯一的斜率;2.两直线的斜率相等,则它们的倾斜角也相等;3.两条直线的倾斜角相等,则它们的斜率也相等;4.倾斜角越大的直线斜率越大;5.斜率越大的直线倾斜角越大.①定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即,倾斜角是90°的直线斜率不存在.知识梳理(2)直线的斜率:判断下列命题是否正确?1.任意一条直线有唯一的倾斜角,

3、也有唯一的斜率;2.两直线的斜率相等,则它们的倾斜角也相等;3.两条直线的倾斜角相等,则它们的斜率也相等;4.倾斜角越大的直线斜率越大;5.斜率越大的直线倾斜角越大.×√×××①定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即,倾斜角是90°的直线斜率不存在.知识梳理(2)直线的斜率:请区分右图中直线l1,,l2,l3的倾斜角和斜率的大小.①定义:一条直线的倾斜角α的正切值叫做这条直线的斜率,斜率常用小写字母k表示,即,倾斜角是90°的直线斜率不存在.知识梳理(2)直线的斜率:形式条件方程应用范围点斜式过点(x0,y0),斜率为k斜截式

4、在y轴上的截距为b,斜率为k两点式过P1(x1,y1),P2(x2,y2)(x1≠x2,y1≠y2)截距式在y轴上的截距为b,在x轴上的截距为a一般式任何直线Ax+By+C=0(A2+B2≠0)知识点小结(一)求倾斜角或者倾斜角取值范围的一般步骤:1.(1)求出直线斜率k或其取值范围.(2)利用正切函数的图像确定倾斜角取值范围.2.求解过程中应注意斜率是否存在.变式训练:已知直线l过点P(4,5),且与以A(-2,3),B(3,0)为端点的线段相交,求直线l的斜率的取值范围.变:P(1,5)P(4,5)[例2]求适合下列条件的直线方程:(1)经过点A,且倾斜角等于直

5、线y=3x的倾斜角的2倍;(2)经过点P(3,2),且在两坐标轴上的截距相等.(1)经过点A(-1,-3),且倾斜角等于直线y=3x的倾斜角的2倍的直线方程.解:由已知,设直线y=3x的倾斜角为α,又直线经过点A(-1,-3),即3x+4y+15=0.(2)经过点P(3,2),且在两坐标轴上的截距相等的直线方程.?(2)经过点P(3,2),且在两坐标轴上的截距相等的直线方程.知识点小结(二)求直线方程的方法:1.直接法:选择恰当形式的直线方程,直接求得;2.待定系数法:设直线方程,再由待定系数法求得.注意:①求直线方程时,斜率是否存在需要分类讨论.②在用直线方程的截

6、距式时,应先判断截距是否为0,若不确定,则需分类讨论.[例3]已知直线l过点P(3,2),且与x轴、y轴的正半轴分别交于A、B两点,求l在两轴上的截距之和最小值及此时直线l的方程.变:求三角形AOB面积最小值及此时直线l的方程.方法点睛:1.求直线方程较常用的方法是待定系数法.若题中直线过定点,一般设直线方程的点斜式,也可以设截距式.2.注意在利用基本不等式求最值时,斜率k的符号.练习2.直线l经过点A,且倾斜角等于直线y=3x的倾斜角的,求直线l的方程;4.已知直线与两坐标轴的正半轴围成四边形,当a为何值时,围成的四边形面积最小?并求最小值.本节小结:本节小结:谢

7、谢!

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。