欢迎来到天天文库
浏览记录
ID:50548705
大小:4.15 MB
页数:16页
时间:2020-03-10
《固体物理学课后题答案.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第一章晶体结构1.1、如果将等体积球分别排成下列结构,设x表示钢球所占体积与总体积之比,证明:结构X简单立方体心立方面心立方六角密排金刚石解:实验表明,很多元素的原子或离子都具有或接近于球形对称结构。因此,可以把这些原子或离子构成的晶体看作是很多刚性球紧密堆积而成。这样,一个单原子的晶体原胞就可以看作是相同的小球按点阵排列堆积起来的。它的空间利用率就是这个晶体原胞所包含的点的数目n和小球体积V所得到的小球总体积nV与晶体原胞体积Vc之比,即:晶体原胞的空间利用率,(1)对于简立方结构:(见教材P2图1-1)a=2r,V=,Vc=a3,n=1∴(2)
2、对于体心立方:晶胞的体对角线BG=n=2,Vc=a3∴(3)对于面心立方:晶胞面对角线BC=n=4,Vc=a3(4)对于六角密排:a=2r晶胞面积:S=6=16晶胞的体积:V=n=12=6个(5)对于金刚石结构,晶胞的体对角线BG=n=8,Vc=a31.3、证明:面心立方的倒格子是体心立方;体心立方的倒格子是面心立方。证明:(1)面心立方的正格子基矢(固体物理学原胞基矢):由倒格子基矢的定义:,同理可得:即面心立方的倒格子基矢与体心立方的正格基矢相同。所以,面心立方的倒格子是体心立方。16(2)体心立方的正格子基矢(固体物理学原胞基矢):由倒格子基
3、矢的定义:,同理可得:即体心立方的倒格子基矢与面心立方的正格基矢相同。所以,体心立方的倒格子是面心立方。1.5、证明倒格子矢量垂直于密勒指数为的晶面系。证明:因为,利用,容易证明所以,倒格子矢量垂直于密勒指数为的晶面系。1.6、对于简单立方晶格,证明密勒指数为的晶面系,面间距满足:,其中为立方边长;并说明面指数简单的晶面,其面密度较大,容易解理。16解:简单立方晶格:,由倒格子基矢的定义:,,倒格子基矢:倒格子矢量:,晶面族的面间距:面指数越简单的晶面,其晶面的间距越大,晶面上格点的密度越大,单位表面的能量越小,这样的晶面越容易解理。1.9、画出立
4、方晶格(111)面、(100)面、(110)面,并指出(111)面与(100)面、(111)面与(110)面的交线的晶向。解:1、(111)面与(100)面的交线的AB,AB平移,A与O点重合,B点位矢:,(111)面与(100)面的交线的晶向,晶向指数。2、(111)面与(110)面的交线的AB,将AB平移,A与原点O重合,B点位矢:,(111)面与(110)面的交线的晶向,晶向指数。16第二章固体结合2.1、两种一价离子组成的一维晶格的马德隆常数()和库仑相互作用能,设离子的总数为。<解>设想一个由正负两种离子相间排列的无限长的离子键,取任一负
5、离子作参考离子(这样马德隆常数中的正负号可以这样取,即遇正离子取正号,遇负离子取负号),用r表示相邻离子间的距离,于是有前边的因子2是因为存在着两个相等距离的离子,一个在参考离子左面,一个在其右面,故对一边求和后要乘2,马德隆常数为当X=1时,有2.3、若一晶体的相互作用能可以表示为试求:(1)平衡间距;(2)结合能(单个原子的);(3)体弹性模量;(4)若取,计算及的值。解:(1)求平衡间距r0由,有:结合能:设想把分散的原子(离子或分子)结合成为晶体,将有一定的能量释放出来,这个能量称为结合能(用w表示)(2)求结合能w(单个原子的)题中标明单
6、个原子是为了使问题简化,说明组成晶体的基本单元是单个原子,而非原子团、离子基团,或其它复杂的基元。显然结合能就是平衡时,晶体的势能,即Umin即:(可代入r0值,也可不代入)(3)体弹性模量由体弹性模量公式:16(4)m=2,n=10,,w=4eV,求α、β①②将,代入①②详解:(1)平衡间距r0的计算晶体内能平衡条件,,(2)单个原子的结合能,,(3)体弹性模量晶体的体积,A为常数,N为原胞数目晶体内能由平衡条件,得16体弹性模量(4)若取,,,2.7、对于,从气体的测量得到Lennard—Jones参数为计算fcc结构的的结合能[以KJ/mol
7、单位),每个氢分子可当做球形来处理.结合能的实验值为0.751kJ/mo1,试与计算值比较.<解>以为基团,组成fcc结构的晶体,如略去动能,分子间按Lennard—Jones势相互作用,则晶体的总相互作用能为:因此,计算得到的晶体的结合能为2.55KJ/mol,远大于实验观察值0.75lKJ/mo1.对于16的晶体,量子修正是很重要的,我们计算中没有考虑零点能的量子修正,这正是造成理论和实验值之间巨大差别的原因.第三章固格振动与晶体的热学性质3.2、讨论N个原胞的一维双原子链(相邻原子间距为a),其2N个格波解,当=时与一维单原子链的结果一一对应
8、。解:质量为的原子位于2n-1,2n+1,2n+3……;质量为的原子位于2n,2n+2,2n+4……。牛顿运动方程N个原胞
此文档下载收益归作者所有