欢迎来到天天文库
浏览记录
ID:50543825
大小:944.50 KB
页数:10页
时间:2020-03-10
《高中数列知识点总结.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、数列知识点总结第一部分等差数列一定义式:二通项公式:一个数列是等差数列的等价条件:(a,b为常数),即是关于n的一次函数,因为,所以关于n的图像是一次函数图像的分点表示形式。三前n项和公式:一个数列是等差数列的另一个充要条件:(a,b为常数,a≠0),即是关于n的二次函数,因为,所以关于n的图像是二次函数图像的分点表示形式。四性质结论1.3或4个数成等差数列求数值时应按对称性原则设置,如:3个数a-d,a,a+d;4个数a-3d,a-d,a+d,a+3d2.与的等差中项;在等差数列中,若,则;若,则;3.若等差数列的项数为2,则;若等差数列的项数为,则,且,4.凡按一定规律和次序
2、选出的一组等差数列的和仍然成等差数列。设,,,则有;5.,,则前(m+n为偶数)或(m+n为奇数)最大第二部分等比数列一定义:成等比数列。二通项公式:,数列{an}是等比数列的一个等价条件是:当且时,关于n的图像是指数函数图像的分点表示形式。三前n项和:;(注意对公比的讨论)四性质结论:1.与的等比中项(同号);2.在等比数列中,若,则;若,则;3.设,,,则有第三部分求杂数列通项公式一.构造等差数列:递推式不能构造等比时,构造等差数列。第一类:凡是出现分式递推式都可以构造等差数列来求通项公式,例如:,两边取倒数是公差为2的等差数列,从而求出。第二类:是公差为1的等差数列二。递推
3、:即按照后项和前项的对应规律,再往前项推写对应式。例如【注:】求通项公式的题,不能够利用构造等比或者构造等差求的时候,一般通过递推来求。第四部分求前n项和一裂项相消法:二错位相减法:凡等差数列和等比数列对应项的乘积构成的数列求和时用此方法,求:①②①减②得:从而求出。错位相减法的步骤:(1)将要求和的杂数列前后各写出三项,列出①式(2)将①式左右两边都乘以公比q,得到②式(3)用①②,错位相减(4)化简计算三倒序相加法:前两种方法不行时考虑倒序相加法例:等差数列求和:两式相加可得:总结:求数列前N项和的常用方法核心提示:求数列的前n项和要借助于通项公式,即先有通项公式,再在分析数
4、列通项公式的基础上,或分解为基本数列求和,或转化为基本数列求和。当遇到具体问题时,要注意观察数列的特点和规律,找到适合的方法解题。一.用倒序相加法求数列的前n项和如果一个数列{an},与首末项等距的两项之和等于首末两项之和,可采用把正着写与倒着写的两个和式相加,就得到一个常数列的和,这一求和方法称为倒序相加法。我们在学知识时,不但要知其果,更要索其因,知识的得出过程是知识的源头,也是研究同一类知识的工具,例如:等差数列前n项和公式的推导,用的就是“倒序相加法”。例题1:设等差数列{an},公差为d,求证:{an}的前n项和Sn=n(a1+an)/2解:Sn=a1+a2+a3+..
5、.+an①倒序得:Sn=an+an-1+an-2+…+a1②①+②得:2Sn=(a1+an)+(a2+an-1)+(a3+an-2)+…+(an+a1)又∵a1+an=a2+an-1=a3+an-2=…=an+a1∴2Sn=n(a2+an)Sn=n(a1+an)/2点拨:由推导过程可看出,倒序相加法得以应用的原因是借助a1+an=a2+an-1=a3+an-2=…=an+a1即与首末项等距的两项之和等于首末两项之和的这一等差数列的重要性质来实现的。二.用公式法求数列的前n项和对等差数列、等比数列,求前n项和Sn可直接用等差、等比数列的前n项和公式进行求解。运用公式求解的注意事项:
6、首先要注意公式的应用范围,确定公式适用于这个数列之后,再计算。例题2:求数列的前n项和Sn解:点拨:这道题只要经过简单整理,就可以很明显的看出:这个数列可以分解成两个数列,一个等差数列,一个等比数列,再分别运用公式求和,最后把两个数列的和再求和。三.用裂项相消法求数列的前n项和裂项相消法是将数列的一项拆成两项或多项,使得前后项相抵消,留下有限项,从而求出数列的前n项和。例题3:求数列(n∈N*)的和解:点拨:此题先通过求数列的通项找到可以裂项的规律,再把数列的每一项拆开之后,中间部分的项相互抵消,再把剩下的项整理成最后的结果即可。四.用错位相减法求数列的前n项和错位相减法是一种常
7、用的数列求和方法,应用于等比数列与等差数列相乘的形式。即若在数列{an·bn}中,{an}成等差数列,{bn}成等比数列,在和式的两边同乘以公比,再与原式错位相减整理后即可以求出前n项和。例题4:求数列{nan}(n∈N*)的和解:设Sn=a+2a2+3a3+…+nan①则:aSn=a2+2a3+…+(n-1)an+nan+1②①-②得:(1-a)Sn=a+a2+a3+…+an-nan+1③若a=1则:Sn=1+2+3+…+n=若a≠1则:点拨:此数列的通项是nan,系数数列是:
此文档下载收益归作者所有