欢迎来到天天文库
浏览记录
ID:50520151
大小:424.50 KB
页数:72页
时间:2020-03-14
《多目标规划方法.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第六章多目标规划方法在地理学研究中,对于许多规划问题,常常需要考虑多个目标,如经济效益目标,生态效益目标,社会效益目标,等等。为了满足这类问题研究之需要,本章拟结合有关实例,对多目标规划方法及其在地理学研究中的应用问题作一些简单地介绍。本章主要内容:多目标规划及其求解技术简介目标规划方法多目标规划应用实例多目标规划及其非劣解多目标规划求解技术简介第一节多目标规划及其非劣解一、多目标规划及其非劣解(一)任何多目标规划问题,都由两个基本部分组成:(1)两个以上的目标函数;(2)若干个约束条件。(二)对于多目
2、标规划问题,可以将其数学模型一般地描写为如下形式:(6.1.2)(6.1.1)式中:为决策变量向量。如果将(6.1.1)和(6.1.2)式进一步缩写,即:(6.1.3)(6.1.4)式中:是k维函数向量,k是目标函数的个数;是m维函数向量;是m维常数向量;m是约束方程的个数。对于线性多目标规划问题,(6.1.3)和(6.1.4)式可以进一步用矩阵表示:(6.1.5)(6.1.6)式中:为n维决策变量向量;为k×n矩阵,即目标函数系数矩阵;为m×n矩阵,即约束方程系数矩阵;为m维的向量,约束向量。二、多目
3、标规划的非劣解对于上述多目标规划问题,求解就意味着需要做出如下的复合选择:▲每一个目标函数取什么值,原问题可以得到最满意的解决?▲每一个决策变量取什么值,原问题可以得到最满意的解决?多目标规划问题的求解不能只追求一个目标的最优化(最大或最小),而不顾其它目标。在图6.1.1中,就方案①和②来说,①的目标值比②大,但其目标值比②小,因此无法确定这两个方案的优与劣。在各个方案之间,显然:③比②好,④比①好,⑦比③好,⑤比④好。而对于方案⑤、⑥、⑦之间则无法确定优劣,而且又没有比它们更好的其他方案,所以它们就
4、被称之为多目标规划问题的非劣解或有效解,其余方案都称为劣解。所有非劣解构成的集合称为非劣解集。非劣解可以用图6.1.1说明。图6.1.1多目标规划的劣解与非劣解当目标函数处于冲突状态时,就不会存在使所有目标函数同时达到最大或最小值的最优解,于是我们只能寻求非劣解(又称非支配解或帕累托解)。一、效用最优化模型二、罚款模型三、约束模型第二节多目标规划求解技术简介为了求得多目标规划问题的非劣解,常常需要将多目标规划问题转化为单目标规划问题去处理。实现这种转化,有如下几种建模方法。四、目标规划模型五、目标达到法
5、是与各目标函数相关的效用函数的和函数。一、效用最优化模型建摸依据:规划问题的各个目标函数可以通过一定的方式进行求和运算。这种方法将一系列的目标函数与效用函数建立相关关系,各目标之间通过效用函数协调,使多目标规划问题转化为传统的单目标规划问题:(6.2.1)(6.2.2)在用效用函数作为规划目标时,需要确定一组权值来反映原问题中各目标函数在总体目标中的权重,即:式中,诸应满足:若采用向量与矩阵二、罚款模型规划决策者对每一个目标函数都能提出所期望的值(或称满意值);通过比较实际值与期望值之间的偏差来选择问题
6、的解,其数学表达式如下:或写成矩阵形式:式中,是与第i个目标函数相关的权重;A是由组成的m×m对角矩阵。三、约束模型理论依据:若规划问题的某一目标可以给出一个可供选择的范围,则该目标就可以作为约束条件而被排除出目标组,进入约束条件组中。假如,除第一个目标外,其余目标都可以提出一个可供选择的范围,则该多目标规划问题就可以转化为单目标规划问题:采用矩阵可记为:四、目标规划模型也需要预先确定各个目标的期望值,同时给每一个目标赋予一个优先因子和权系数,假定有K个目标,L个优先级,目标规划模型的数学形式为:(6.
7、2.18)(6.2.19)(6.2.20)式中:和分别表示与相应的、与相比的目标超过值和不足值,即正、负偏差变量;表示第l个优先级;、表示在同一优先级中,不同目标的正、负偏差变量的权系数。五、目标达到法首先将多目标规划模型化为如下标准形式:(6.2.21)(6.2.22)在求解之前,先设计与目标函数相应的一组目标值理想化的期望目标,每一个目标对应的权重系数为,再设为一松弛因子。那么,多目标规划问题(6.2.21)~(6.2.22)就转化为:(6.2.25)(6.2.24)(6.2.23)用目标达到法求解
8、多目标规划的计算过程,可以通过调用Matlab软件系统优化工具箱中的fgoalattain函数实现。该函数的使用方法,详见教材的配套光盘。第三节目标规划方法通过上节的介绍和讨论,我们知道,目标规划方法是解决多目标规划问题的重要技术之一。这一方法是美国学者查恩斯(A.Charnes)和库伯(W.W.Cooper)于1961年在线性规划的基础上提出来的。后来,查斯基莱恩(U.Jaashelainen)和李(Sang.Lee)等人,进一步给出了求
此文档下载收益归作者所有