欢迎来到天天文库
浏览记录
ID:50433731
大小:226.50 KB
页数:7页
时间:2020-03-09
《计算n阶行列式的若干方法举例.doc》由会员上传分享,免费在线阅读,更多相关内容在工程资料-天天文库。
1、计算n阶行列式的若干方法举例20111113班孟遵制涛有不同的求解方法。下面介绍几种常用的方法,并举例说明。1.利用行列式定义直接计算例1计算行列式解Dn中不为零的项用一般形式表示为.该项列标排列的逆序数t(n-1n-2…1n)等于,故2.利用行列式的性质计算例2一个n阶行列式的元素满足则称Dn为反对称行列式,证明:奇数阶反对称行列式为零.证明:由知,即故行列式Dn可表示为由行列式的性质当n为奇数时,得Dn=-Dn,因而得Dn=0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。因此化三角形是行列
2、式计算中的一个重要方法。例3计算n阶行列式解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n列都加到第1列上,行列式不变,得4.降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。例4计算n阶行列式解将Dn按第1行展开.5.逆推公式法逆推公式法:对n阶行列式Dn找出Dn与Dn-1或Dn与Dn-1,Dn-2之间的一种关系——称为逆推公式(其中Dn,Dn-1,Dn-2等结构相同
3、),再由递推公式求出Dn的方法称为递推公式法。例5证明证明:将Dn按第1列展开得由此得递推公式:,利用此递推公式可得6.利用范德蒙行列式例6计算行列式解把第1行的-1倍加到第2行,把新的第2行的-1倍加到第3行,以此类推直到把新的第n-1行的-1倍加到第n行,便得范德蒙行列式7.加边法(升阶法)加边法(又称升阶法)是在原行列式中增加一行一列,且保持原行列式不变的方法。例7计算n阶行列式解:(箭形行列式)8.数学归纳法例8计算n阶行列式解:用数学归纳法.当n=2时假设n=k时,有则当n=k+1时,把Dk+1按第一列展开,得由此,对任意的正整数n,
4、有9.拆开法把某一行(或列)的元素写成两数和的形式,再利用行列式的性质将原行列式写成两行列式之和,使问题简化以利计算。例9计算行列式解:……
此文档下载收益归作者所有