新课标立体几何常考平行证明题汇总.doc

新课标立体几何常考平行证明题汇总.doc

ID:50413659

大小:1.85 MB

页数:9页

时间:2020-03-05

新课标立体几何常考平行证明题汇总.doc_第1页
新课标立体几何常考平行证明题汇总.doc_第2页
新课标立体几何常考平行证明题汇总.doc_第3页
新课标立体几何常考平行证明题汇总.doc_第4页
新课标立体几何常考平行证明题汇总.doc_第5页
资源描述:

《新课标立体几何常考平行证明题汇总.doc》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、.新课标立体几何常考平行证明题汇总立体几何中证明线面平行或面面平行都可转化为线线平行,而证明线线平行一般有以下的一些方法:(1)通过“平移”。(2)利用三角形中位线的性质。(3)利用平行四边形的性质。(4)利用对应线段成比例。(5)利用面面平行,等等。A1ED1C1B1DCBA3、如图,在正方体中,是的中点,求证:平面。证明:连接交于,连接,∵为的中点,为的中点∴为三角形的中位线∴又在平面内,在平面外∴平面。考点:线面平行的判定5、已知正方体,是底对角线的交点.求证:(1)C1O∥面;(2)面.证明:(1)连结,设,连结∵是正方体是平行四边形∴A1C1

2、∥AC且又分别是的中点,∴O1C1∥AO且是平行四边形面,面∴C1O∥面(2)面又,同理可证,又面考点:线面平行的判定(利用平行四边形),线面垂直的判定A1AB1BC1CD1DGEF7、正方体ABCD—A1B1C1D1中.(1)求证:平面A1BD∥平面B1D1C;(2)若E、F分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD.Word文档.证明:(1)由B1B∥DD1,得四边形BB1D1D是平行四边形,∴B1D1∥BD,又BDË平面B1D1C,B1D1平面B1D1C,∴BD∥平面B1D1C.同理A1D∥平面B1D1C.而A1D∩BD=D,∴

3、平面A1BD∥平面B1CD.(2)由BD∥B1D1,得BD∥平面EB1D1.取BB1中点G,∴AE∥B1G.从而得B1E∥AG,同理GF∥AD.∴AG∥DF.∴B1E∥DF.∴DF∥平面EB1D1.∴平面EB1D1∥平面FBD.考点:线面平行的判定(利用平行四边形)10、如图,在正方体中,、、分别是、、的中点.求证:平面∥平面.证明:∵、分别是、的中点,∥又平面,平面∥平面∵四边形为平行四边形,∥又平面,平面∥平面,平面∥平面考点:线面平行的判定(利用三角形中位线)11、如图,在正方体中,是的中点.(1)求证:平面;(2)求证:平面平面.证明:(1)设

4、,∵、分别是、的中点,∥又平面,平面,∥平面(2)∵平面,平面,又,,平面,平面,平面平面Word文档.考点:线面平行的判定(利用三角形中位线),面面垂直的判定(1)通过“平移”再利用平行四边形的性质1.如图,四棱锥P-ABCD的底面是平行四边形,点E、F分别为棱AB、PD的中点.求证:AF∥平面PCE;(第1题图)分析:取PC的中点G,连EG.,FG,则易证AEGF是平行四边形2、如图,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,过A作AE⊥CD,垂足为E,G、F分别为AD、CE的中点,现将△ADE沿AE折叠,使得

5、DE⊥EC.(Ⅰ)求证:BC⊥面CDE;(Ⅱ)求证:FG∥面BCD;分析:取DB的中点H,连GH,HC则易证FGHC是平行四边形3、已知直三棱柱ABC-A1B1C1中,D,E,F分别为AA1,CC1,AB的中点,M为BE的中点,AC⊥BE.求证:(Ⅰ)C1D⊥BC;(Ⅱ)C1D∥平面B1FM.分析:连EA,易证C1EAD是平行四边形,于是MF//EAWord文档.4、如图所示,四棱锥PABCD底面是直角梯形,CD=2AB,E为PC的中点,证明:;分析::取PD的中点F,连EF,AF则易证ABEF是平行四边形(2)利用三角形中位线的性质ABCDEFGM5

6、、如图,已知、、、分别是四面体的棱、、、的中点,求证:∥平面。分析:连MD交GF于H,易证EH是△AMD的中位线6、如图,ABCD是正方形,O是正方形的中心,E是PC的中点。求证:PA∥平面BDE7.如图,三棱柱ABC—A1B1C1中,D为AC的中点.求证:AB1//面BDC1;分析:连B1C交BC1于点E,易证ED是△B1AC的中位线(.3)利用平行四边形的性质9.正方体ABCD—A1B1C1D1中O为正方形ABCD的中心,M为BB1的中点,求证:D1O//平面A1BC1;分析:连D1B1交A1C1于O1点,易证四边形OBB1O1Word文档.是平行

7、四边形PEDCBA10、在四棱锥P-ABCD中,AB∥CD,AB=DC,.求证:AE∥平面PBC;分析:取PC的中点F,连EF则易证ABFE是平行四边形11、在如图所示的几何体中,四边形ABCD为平行四边形,∠ ACB=,EA⊥平面ABCD,EF∥AB,FG∥BC,EG∥AC.AB=2EF.(Ⅰ)若M是线段AD的中点,求证:GM∥平面ABFE;(I)证法一:因为EF//AB,FG//BC,EG//AC,,所以∽由于AB=2EF,因此,BC=2FC,连接AF,由于FG//BC,在中,M是线段AD的中点,则AM//BC,且因此FG//AM且FG=AM,所以

8、四边形AFGM为平行四边形,因此GM//FA。又平面ABFE,平面ABFE,所以GM//平面A

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。