欢迎来到天天文库
浏览记录
ID:50408878
大小:959.00 KB
页数:14页
时间:2020-03-05
《三年高考2016_2018高考数学试题分项版解析专题08导数与不等式函数零点相结合文含解析.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、专题08导数与不等式、函数零点相结合文考纲解读明方向考纲内容考 点考查频度学科素养规律与趋向1.利用导数研究函数的单调性、极(最)值,并会解决与之有关的方程(不等式)问题;2.会利用导数解决某些简单的实际问题.1.导数与不等式3年3考★★★逻辑推理数学计算1.高频考向:利用导数解决与之有关的方程(不等式)问题2.低频考向:利用导数解决某些实际问题.3.特别关注:利用导数研究函数的零点问题.2018年高考全景展示1.【2018年浙江卷】已知函数f(x)=−lnx.(Ⅰ)若f(x)在x=x1,x2(x
2、1≠x2)处导数相等,证明:f(x1)+f(x2)>8−8ln2;(Ⅱ)若a≤3−4ln2,证明:对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.【答案】(Ⅰ)见解析(Ⅱ)见解析【解析】分析:(Ⅰ)先求导数,根据条件解得x1,x2关系,再化简f(x1)+f(x2)为,利用基本不等式求得取值范围,最后根据函数单调性证明不等式,(Ⅱ)一方面利用零点存在定理证明函数有零点,另一方面,利用导数证明函数在上单调递减,即至多一个零点.两者综合即得结论.14x(0,16)16(16,+∞)-0+2
3、-4ln2所以g(x)在[256,+∞)上单调递增,故,即.由(Ⅰ)可知g(x)≥g(16),又a≤3–4ln2,故–g(x)–1+a≤–g(16)–1+a=–3+4ln2+a≤0,所以h′(x)≤0,即函数h(x)在(0,+∞)上单调递减,因此方程f(x)–kx–a=0至多1个实根.综上,当a≤3–4ln2时,对于任意k>0,直线y=kx+a与曲线y=f(x)有唯一公共点.点睛:利用导数证明不等式常见类型及解题策略:(1)构造差函数.根据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,
4、进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.2.【2018年全国卷Ⅲ文】已知函数.(1)求曲线在点处的切线方程;(2)证明:当时,.14【答案】(1)切线方程是(2)证明见解析【解析】分析:(1)求导,由导数的几何意义求出切线方程。(2)当时,,令,只需证明即可。详解:(1),.因此曲线在点处的切线方程是.(2)当时,.令,则.当时,,单调递减;当时,,单调递增;所以.因此.点睛:本题考查函数与导数
5、的综合应用,由导数的几何意义可求出切线方程,第二问当时,,令,将问题转化为证明很关键,本题难度较大。3.【2018年全国卷II文】已知函数.(1)若,求的单调区间;(2)证明:只有一个零点.【答案】(1)f(x)在(–∞,),(,+∞)单调递增,在(,)单调递减.(2)f(x)只有一个零点.【解析】分析:(1)将代入,求导得,令求得增区间,令求得减区间;(2)令,即,则将问题转化为函数只有一个零点问题,研究函数单调性可得.14(2)由于,所以等价于.设=,则g′(x)=≥0,仅当x=0时g′(x)=
6、0,所以g(x)在(–∞,+∞)单调递增.故g(x)至多有一个零点,从而f(x)至多有一个零点.又f(3a–1)=,f(3a+1)=,故f(x)有一个零点.综上,f(x)只有一个零点.点睛:(1)用导数求函数单调区间的步骤如下:①确定函数的定义域;②求导数;③由(或)解出相应的的取值范围,当时,在相应区间上是增函数;当时,在相应区间上是减增函数.(2)本题第二问重在考查零点存在性问题,解题的关键在于将问题转化为求证函数有唯一零点,可先证明其单调,再结合零点存在性定理进行论证.2017年高考全景展示1
7、.【2017课标3,文21】已知函数=lnx+ax2+(2a+1)x.(1)讨论的单调性;(2)当a﹤0时,证明.【答案】(1)当时,在单调递增;当时,则在单调递增,在单调递减;(2)详见解析【解析】试题分析:(1)先求函数导数,再根据导函数符号变化情况讨论单调性:当时,,则在单调递增,当时,则在单调递增,在单调递减.(2)证明,即证,而,所以目标函数为,即(),利用导数易得,即得证.14【考点】利用导数求单调性,利用导数证不等式【名师点睛】利用导数证明不等式常见类型及解题策略 (1)构造差函数.根
8、据差函数导函数符号,确定差函数单调性,利用单调性得不等量关系,进而证明不等式.(2)根据条件,寻找目标函数.一般思路为利用条件将求和问题转化为对应项之间大小关系,或利用放缩、等量代换将多元函数转化为一元函数.2.【2017天津,文19】设,.已知函数,.(Ⅰ)求的单调区间;(Ⅱ)已知函数和的图象在公共点(x0,y0)处有相同的切线,(i)求证:在处的导数等于0;(ii)若关于x的不等式在区间上恒成立,求b的取值范围.【答案】(Ⅰ)递增区间为,,递减区间为.(2)(ⅰ)
此文档下载收益归作者所有