【推荐】13.4 课题学习最短路径问题-同步练习.doc

【推荐】13.4 课题学习最短路径问题-同步练习.doc

ID:50343837

大小:135.50 KB

页数:3页

时间:2020-03-08

【推荐】13.4 课题学习最短路径问题-同步练习.doc_第1页
【推荐】13.4 课题学习最短路径问题-同步练习.doc_第2页
【推荐】13.4 课题学习最短路径问题-同步练习.doc_第3页
资源描述:

《【推荐】13.4 课题学习最短路径问题-同步练习.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、13.4课题学习最短路径问题要点感知在解决最短路径问题时,我们通常利用_____、_____等变换把已知问题转化为容易解决的问题,从而作出最短路径的选择.预习练习已知,如图,在直线l的同侧有两点A,B.(1)在图1的直线上找一点P使PA+PB最短;(2)在图2的直线上找一点P,使PA-PB最长.知识点路径最短问题1.如图所示,P为∠AOB内一点,P1,P2分别是P关于OA,OB的对称点,P1P2交OA于M,交OB于N,若P1P2=8cm,则△PMN的周长是()A.7cmB.5cmC.8cmD.10cm2.如图,在等腰Rt△ABC中,D是BC边的中点,E是AB边上一动点,要使EC+ED最

2、小,请找点E的位置.3.如图,村庄A,B位于一条小河的两侧,若河岸a,b彼此平行,现在要建设一座与河岸垂直的桥CD,问桥址应如何选择,才能使A村到B村的路程最近?4.如图,在△ABC中,AB=AC,AD平分∠CAB,N点是AB上的一定点,M是AD上一动点,要使MB+MN最小,请找点M的位置.5.(兰州中考改编)如图,四边形ABCD中,∠BAD=120°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN周长最小时,求∠AMN+∠ANM的度数.挑战自我6.(济宁中考)如图,在直角坐标系中,点A、B的坐标分别为(1,4)和(3,0),点C是坐标轴上一个动点,且A、B、C三点不在

3、同一条直线上,当△ABC的周长最小时,点C的坐标是()A.(0,0)B.(0,1)C.(0,2)D.(0,3)参考答案课前预习要点感知轴对称平移预习练习(1)作点B关于直线l的对称点C,连接AC交直线l于点P,连接BP.点P即为所求.图略.(2)连接AB并延长,交直线l于点P.图略.当堂训练1.C2.作点C关于AB的对称点C′,连接C′D与AB的交点为E点.图略.3.①过点A作AP⊥a,并在AP上向下截取AA′,使AA′=河的宽度;②连接A′B交b于点D;③过点D作DE∥AA′交a于点C;④连接AC.则CD即为桥的位置.图略.课后作业4.连接NC与AD的交点为M点.点M即为所求.图略.

4、5.作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,连接AM,AN,则A′A″即为△AMN的周长最小值.作DA延长线AH.∵∠DAB=120°,∴∠HAA′=60°.∴∠AA′M+∠A″=∠HAA′=60°.∵∠MA′A=∠MAA′,∠NAD=∠A″,且∠MA′A+∠MAA′=∠AMN,∠NAD+∠A″=∠ANM,∴∠AMN+∠ANM=∠MA′A+∠MAA′+∠NAD+∠A″=2(∠AA′M+∠A″)=2×60°=120°.6.D

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。