欢迎来到天天文库
浏览记录
ID:50287579
大小:587.50 KB
页数:22页
时间:2020-03-07
《运筹学-运输问题的表上作业法(名校讲义)精选ppt课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库。
1、第十讲运输问题的表上作业法§1运输问题事例§2运输问题的一般形式§3表上作业法§1运输问题事例(1)已知,有4个产地(源点)生产的产品需销售到4个需求地(目的地或汇点),其源点产量和目的地需求量见表1-5。表1-5运输问题的需求量及产量目的地需求量源点产量1234总计22281723901234总计2418123690其源点到目的地的单位产品的运费价格见图1-7。§1运输问题事例(2)费目用的源点地12341③⑨⑤⑥2④①⑦④3⑥⑧②⑤4⑤⑤④③2418123622281723图1-7运输费用矩阵表格旁边数字为产量和需要求量
2、§2运输问题的一般形式ri——源i产量,aj——目的地j的需求量。§3表上作业法(1)与单纯形表格法一样,该法亦分两步进行:·求出初始基础可行解·求出最优解1.用最小元素法求出满意的初始基础可解其方法是,按照费用矩阵元素Cij增长顺序逐个选择引入基本解的变量xij,非退化情况下,每选择1个,就必然排除1个源点或目的地,最后一步可一次排除1个源点和1个目的地,这样便可得到一个初始基础可行解。§3表上作业法(2)以上例考察,观察图1-7。①∵min{cij}=c22=1。故优先分配源2和目的地2之间的产品图1-8最小元素法第1步
3、③⑨⑤⑥④18①⑦④⑥⑧②⑤⑤⑤④③2401222171023361828§3表上作业法(3)②余下元素中,最小值为c32=2。图1-9最小元素法第2步③依此类推,最后获初始基础可行解示如图1-10中。③⑨⑤⑥④18①⑦④⑥⑧12②⑤⑤⑤④③240122217102336182805§3表上作业法(4)图1-10初始基础可行解即基础解为:x11=22,x12=18,x33=12,x42=8,x43=5,x44=23。此时总费用为225。22③2⑨⑤⑥④18①⑦⑤⑥⑧12②⑤⑤8⑤5④23③§3表上作业法(5)2.求出最优解这
4、有两种方法:闭回路法和位势法。①闭回路法,其思路是令表中空格(即非基础解),对应的变量由0增加d单位,然后在保持产品供求平衡(即满足约束条件)情况下,使基础解参与变动,看其费有如何变化,若费用减少,则该非基变量可进入基,否则,加以排除,其思路与单纯形法一致。现继上图继续改进基础解,直至达优。i)参见图1-11,分析非基变量x32增加d单位以后,其它基础解及费用变化。§3表上作业法(6)22③2⑨⑤⑥24④18①⑦④18⑥⑧+d12②-d⑤12⑤8⑤-d5④+d23③36222817232.求出最优解图1-11回路法原理§3表
5、上作业法(7)为使供求平衡,必须符合:x32+d→x42-d→x43+d→x33-d变动后,费用增加值为:8d-5d+4d-2d=5d,即费用增加,x32不能进基,为比较,把增加1个单位产品所引起的费用增加值填入相应的非基变量表格内,这又称检验值。注意,在用回路法求解每个非基变量检验值时,在根据供求平衡寻找闭合回路过程中,其回路转折点必须是基础解!例如,分析非基解x31↑→x11↓→x12↑→x42↓→x43↑→x33↓→x31。§3表上作业法(8)22③2⑨⑤⑥24④18①⑦④18⑥⑧12②⑤12⑤8⑤5④23③36222
6、817239695-3745-1对每个非基变量计算后,将其检验值填入图1-12中。图1-12回路法计算结果其中:内表示费用元素内表示检验值表内其它值为基础解。§3表上作业法(9)ii)观察表格,或检验值全部≥0,已达最优胜,结束。否则,选取最负的检验值所对的非基变量,令其进基。图1-12中,x13的检验值为最负,故令x13进基,应使x13尽量大,但又必须使其它变量非负。观察x13变化规律:x13↑→x12↓→x42↑→x43↓。应取下降变量中的最小值作为x13的值。此时min{x12,x43}=min{2,5}=2。故令
7、x13=2则x12=0,x42=10,x43=3。将图1-12修正后,再求出当前非变量的检验值,示如图1-13。非基础解的检验数合为正,故获最成解,总费用为249。§3表上作业法(10)22③⑨2⑤⑥24④18①⑦④18⑥⑧12②⑤12⑤10⑤3④23③3622281723636357452图1-13回路法所得最优表格§3表上作业法(11)②位势法(简捷法)该法对运输费用矩阵表格每次可确定一组“行值”和“列值”。确定原则为使得每个基础变量之费用cij等于相应得行、列值之和,根据该原则求出行列值之后,用这些值再去求解每个非基本
8、变量的检验数。结合本例阐述该步骤:(见图1-14)§3表上作业法(12)图1-14用位势法求解实例22③2⑨⑤⑥24④18①⑦④18⑥⑧12②⑤12⑤8⑤5④23③3622281723969-35745-1S1S2S3S4t1t2t3t4§3表上作业法(13)i)令si,tj分别为行值和列
此文档下载收益归作者所有