欢迎来到天天文库
浏览记录
ID:50173202
大小:608.00 KB
页数:61页
时间:2020-03-09
《直线与圆的方程复习PPT课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库。
1、第1节直线方程第七章直线与圆的方程要点·疑点·考点1.倾斜角、斜率、截距直线向上的方向与x轴正方向所成的最小正角,叫做这条直线的倾斜角.倾斜角的取值范围是[0,π](2)若直线的倾斜角为α(α≠90°),则k=tanα,叫做这条直线的斜率.经过两点P1(x1,y1),P2(x2,y2)(x1≠x2)的直线的斜率(3)直线的横截距是直线与x轴交点的横坐标,直线的纵截距是直线与y轴交点的纵坐标.2.直线方程的五种形式.(1)点斜式:设直线l过定点P(x0,y0),斜率为k,则直线l的方程为y-y0=k(x-x0)(2)斜截式:设直线l斜率为k,在y轴
2、截距为b,则直线l的方程为y=kx+b(3)两点式:设直线l过两点P1(x1,y1),P2(x2,y2)x1≠x2,y1≠y2则直线l的方程为(y-y1)/(y2-y1)=(x-x1)/(x2-x1)(4)截距式:设直线l在x、y轴截距分别为a、b(ab≠0)则直线l的方程为x/a+y/b=1.(5)一般式:直线l的一般式方程为Ax+By+C=0(A2+B2≠0)1.设θ∈R,则直线xsinθ-√3y+1=0的倾斜角的取值范围为____________________________________2.直线l经过点M(2,1),其倾斜角是直线x-
3、3y+4=0的倾斜角的2倍,直线l的方程是__________________课前热身[0°,30°]∪[150°,180°).3x-4y-2=0.3.经过点(2,1),且方向向量为v=(-2,2)的直线l的方程是_____________.x+y-3=05.A、B是x轴上两点,点P的横坐标为2,且
4、PA
5、=
6、PB
7、,若直线PA的方程为x-y+1=0,则直线PB的方程为()(A)2x-y-1=0(B)x+y-5=0(C)2x+y-7=0(D)2y-x-4=0B4.过点(-1,1)在x轴与y轴上截距的绝对值相等的直线有________.2条6曲线
8、y=2x-x3在点(-1,-1)处的切线方程是()Ax+y+2=0Bx+y+3=0Cx+y+4=0Dx+y+5=0A能力·思维·方法1.过点P(2,1)作直线l交x、y轴的正半轴于A、B两点,当|PA|·|PB|取到最小值时,求直线l的方程.【解题回顾】①本题还可以求|OA|+|OB|与三角形AOB面积的最值;②求直线方程的基本方法包括利用条件直接求直线的基本量和利用待定系数法求直线的基本量;③在研究最值问题时,可以从几何图形开始,找到取最值时的情形,也可以从代数角度去考虑,构建目标函数,进而转化为研究函数的最值问题.2.直线l被两
9、条直线l1:4x+y+3=0和l2:3x-5y-5=0截得的线段中点为P(-1,2),求直线l的方程.【解题回顾】除以上解法外,设点斜式为y-2=k(x+1),再由中点概念求k也是可行的.【解题回顾】数形结合强调较多的是将代数问题几何化,而解析法则是通过坐标系将几何问题代数化.3.如图,设△ABC为正三角形,边BC、AC上各有一点D、E,而且
10、BD
11、=
12、BC
13、,
14、CE
15、=
16、CA
17、,AD、BE交于P.求证:AP⊥CP.【解题回顾】研究直线l的斜率a与直线AC、BC的斜率的大小关系时,要注意观察图形.请读者研究,如果将本题条件改为A(-1,4),B(
18、3,1),结论又将如何?4.已知直线l:y=ax+2和A(1,4),B(3,1)两点,当直线l与线段AB相交时,求实数a的取值范围.延伸·拓展5.已知过原点O的一条直线与函数y=log8x的图象交于A、B两点,分别过A、B作y轴的平行线与函数y=log2x的图象交于C、D两点.证明:点C、D和原点O在同一直线上.【解题分析】只须证明OC与OD两条直线的斜率相等.第2节两条直线的位置关系要点·疑点·考点1.两条直线的平行与垂直两条直线有斜率且不重合,则l1∥l2k1=k2两条直线都有斜率,l1⊥l2k1·k2=-1若直线l1:A1x+B1y+
19、C1=0,l2:A2x+B2y+C2=0,则l1⊥l2A1A2+B1B2=0无论直线的斜率是否存在,上式均成立,所以此公式用起来更方便.2.两条直线l1,l2相交构成四个角,它们是两对对顶角,把l1依逆时针方向旋转到与l2重合时所转的角,叫做l1到l2的角,l1到l2的角的范围是(0,π).l1与l2所成的角是指不大于直角的角,简称夹角.到角的公式是,夹角公式是,以上公式适用于两直线斜率都存在,且k1k2≠-1,若不存在,由数形结合法处理.3.若l1:A1x+B1y+C1=0(A1、B1不同时为零),l2:A2x+B2y+C2=0(A2,B2不
20、同时为0)则当A1/A2≠B1/B2时,l1与l2相交,当A1/A2=B1/B2≠C1/C2时,l1∥l2;当A1/A2=B1/B2=C
此文档下载收益归作者所有