天津市高考数学复习题型练7大题专项(五)解析几何综合问题理.doc

天津市高考数学复习题型练7大题专项(五)解析几何综合问题理.doc

ID:50138849

大小:798.00 KB

页数:10页

时间:2020-03-05

天津市高考数学复习题型练7大题专项(五)解析几何综合问题理.doc_第1页
天津市高考数学复习题型练7大题专项(五)解析几何综合问题理.doc_第2页
天津市高考数学复习题型练7大题专项(五)解析几何综合问题理.doc_第3页
天津市高考数学复习题型练7大题专项(五)解析几何综合问题理.doc_第4页
天津市高考数学复习题型练7大题专项(五)解析几何综合问题理.doc_第5页
资源描述:

《天津市高考数学复习题型练7大题专项(五)解析几何综合问题理.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、题型练7 大题专项(五)解析几何综合问题1.(2018天津,理19)设椭圆=1(a>b>0)的左焦点为F,上顶点为B.已知椭圆的离心率为,点A的坐标为(b,0),且

2、FB

3、·

4、AB

5、=6.(1)求椭圆的方程;(2)设直线l:y=kx(k>0)与椭圆在第一象限的交点为P,且l与直线AB交于点Q.若sin∠AOQ(O为原点),求k的值.102.已知椭圆C:=1(a>b>0)经过点,离心率为.(1)求椭圆C的方程;(2)不垂直于坐标轴的直线l与椭圆C交于A,B两点,以AB为直径的圆过原点,且线段AB的垂直平分线交y轴于点P,求直线l的方程.3.设椭圆=1(a>)的右焦点为F,

6、右顶点为A.已知,其中O为原点,e为椭圆的离心率.(1)求椭圆的方程;(2)设过点A的直线l与椭圆交于点B(B不在x轴上),垂直于l的直线与l交于点M,与y轴交于点H.若BF⊥HF,且∠MOA≤∠MAO,求直线l的斜率的取值范围.104.(2018北京,理19)已知抛物线C:y2=2px经过点P(1,2).过点Q(0,1)的直线l与抛物线C有两个不同的交点A,B,且直线PA交y轴于点M,直线PB交y轴于点N.(1)求直线l的斜率的取值范围;(2)设O为原点,=λ=μ,求证:为定值.5.已知抛物线C:y2=2x的焦点为F,平行于x轴的两条直线l1,l2分别交C于A,B两点

7、,交C的准线于P,Q两点.(1)若F在线段AB上,R是PQ的中点,证明AR∥FQ;(2)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.106.如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(1)求椭圆E的标准方程;(2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.10题型练7 大题专项(五)解析几何综合问题1.解(1)设椭圆的焦距为2c,由已知有,又由a2=b2+c2,可得2a=3

8、b.由已知可得,

9、FB

10、=a,

11、AB

12、=b.由

13、FB

14、·

15、AB

16、=6,可得ab=6,从而a=3,b=2.所以,椭圆的方程为=1.(2)设点P的坐标为(x1,y1),点Q的坐标为(x2,y2).由已知有y1>y2>0,故

17、PQ

18、sin∠AOQ=y1-y2.又因为

19、AQ

20、=,而∠OAB=,故

21、AQ

22、=y2.由sin∠AOQ,可得5y1=9y2.由方程组消去x,可得y1=易知直线AB的方程为x+y-2=0,由方程组消去x,可得y2=由5y1=9y2,可得5(k+1)=3,两边平方,整理得56k2-50k+11=0,解得k=,或k=所以,k的值为2.解(1)由题意得解得a=2,

23、b=1.故椭圆C的方程是+y2=1.(2)设直线l的方程为y=kx+t,设A(x1,y1),B(x2,y2),10联立消去y,得(1+4k2)x2+8ktx+4t2-4=0,则有x1+x2=,x1x2=Δ>0⇒4k2+1>t2,y1+y2=kx1+t+kx2+t=k(x1+x2)+2t=,y1y2=(kx1+t)(kx2+t)=k2x1x2+kt(x1+x2)+t2=k2+kt+t2=因为以AB为直径的圆过坐标原点,所以OA⊥OB,x1x2+y1y2=0.因为x1x2+y1y2==0,所以5t2=4+4k2.因为Δ>0,所以4k2+1>t2,解得t<-或t>又设A,B的

24、中点为D(m,n),则m=,n=因为直线PD与直线l垂直,所以kPD=-,得由解得当t=-时,Δ>0不成立.当t=1时,k=±,所以直线l的方程为y=x+1或y=-x+1.3.解(1)设F(c,0),由,即,可得a2-c2=3c2,又a2-c2=b2=3,所以c2=1,因此a2=4.所以,椭圆的方程为=1.(2)设直线l的斜率为k(k≠0),则直线l的方程为y=k(x-2).10设B(xB,yB),由方程组消去y,整理得(4k2+3)x2-16k2x+16k2-12=0.解得x=2,或x=,由题意得xB=,从而yB=由(1)知,F(1,0),设H(0,yH),有=(-1

25、,yH),由BF⊥HF,得=0,所以=0,解得yH=因此直线MH的方程为y=-x+设M(xM,yM),由方程组消去y,解得xM=在△MAO中,∠MOA≤∠MAO⇔

26、MA

27、≤

28、MO

29、,即(xM-2)2+,化简得xM≥1,即1,解得k≤-,或k所以,直线l的斜率的取值范围为4.(1)解因为抛物线y2=2px经过点P(1,2),所以4=2p,解得p=2,所以抛物线的方程为y2=4x.由题意可知直线l的斜率存在且不为0,设直线l的方程为y=kx+1(k≠0).由得k2x2+(2k-4)x+1=0.依题意,Δ=(2k-4)2-4×k2×1>0,解得

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。