conditional expectation(条件期望讲义).pdf

conditional expectation(条件期望讲义).pdf

ID:50129936

大小:67.13 KB

页数:8页

时间:2020-03-06

conditional expectation(条件期望讲义).pdf_第1页
conditional expectation(条件期望讲义).pdf_第2页
conditional expectation(条件期望讲义).pdf_第3页
conditional expectation(条件期望讲义).pdf_第4页
conditional expectation(条件期望讲义).pdf_第5页
资源描述:

《conditional expectation(条件期望讲义).pdf》由会员上传分享,免费在线阅读,更多相关内容在行业资料-天天文库

1、AConditionalexpectationA.1Reviewofconditionaldensities,expectationsWestartwiththecontinuouscase.Thisissections6.6and6.8inthebook.LetX;Ybecontinuousrandomvariables.Wede nedtheconditionaldensityofXgivenYtobefX;Y(x;y)fXjY(xjy)=fY(y)ThenZbP(aXbjY=y)=fX;Y(xjy)dxaConditioningonY=yiscond

2、itioningonaneventwithprobabilityzero.Thisisnotde ned,sowemakesenseoftheleftsideabovebyalimitingprocedure:P(aXbjY=y)=limP(aXbjjYyj<)!0+Wethende netheconditionalexpectationofXgivenY=ytobeZ1E[XjY=y]=xfXjY(xjy)dx1Wehavethefollowingcontinuousanalogofthepartitiontheorem.Z1E[Y]=E[Y

3、jX=x]fX(x)dx1Nowwereviewthediscretecase.Thiswassection2.5inthebook.Insomesenseitissimplerthanthecontinuouscase.Everythingcomesdowntothevery rstde nitioninvolvingconditioning.ForeventsAandBP(AB)P(AjB)=P(B)assumingthatP(B)>0.IfXisadiscreteRV,theconditionaldensityofXgiventheeventBisP

4、(X=x;B)f(xjB)=P(X=xjB)=P(B)andtheconditionalexpectationofXgivenBisXE[XjB]=xf(xjB)x1ThepartitiontheoremsaysthatifBnisapartitionofthesamplespacethenXE[X]=E[XjBn]P(Bn)nNowsupposethatXandYarediscreteRV's.IfyisintherangeofYthenY=yisaeventwithnonzeroprobability,sowecanuseitastheBintheabov

5、e.Sof(xjY=y)isde ned.Wecanchangethenotationtomakeitlooklikethecontinuouscaseandwritef(xjY=y)asfXjY(xjy).OfcourseitisgivenbyP(X=x;Y=y)fX;Y(x;y)fXjY(xjy)==P(Y=y)fY(y)Thislooksidenticaltotheformulainthecontinuouscase,butitisreallyadi erentformula.IntheabovefX;YandfYarepmf's;inthecontin

6、uouscasetheyarepdf's.WiththisnotationwehaveXE[XjY=y]=xfXjY(xjy)xandthepartitiontheoremisXE[X]=E[XjY=y]P(Y=y)yA.2ConditionalexpectationasaRandomVariableConditionalexpectationssuchasE[XjY=2]orE[XjY=5]arenumbers.IfweconsiderE[XjY=y],itisanumberthatdependsony.Soitisafunctionofy.Inthisse

7、ctionwewillstudyanewobjectE[XjY]thatisarandomvariable.Westartwithanexample.Example:Rolladieuntilwegeta6.LetYbethetotalnumberofrollsandXthenumberof1'sweget.WecomputeE[XjY=y].TheeventY=ymeansthattherewerey1rollsthatwerenota6andthentheythrollwasasix.Sogiventhisevent,Xhasabinomialdistr

8、ibutionwithn=y1tri

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。