资源描述:
《函数的奇偶性_PPT精品课件.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、函数的奇偶性在日常生活中,有非常多的轴对称现象,如人与镜中的影关于镜面对称,请同学们举几个例子。除了轴对称外,有些是关于某点对称,如风扇的叶子,如图:它关于什么对称?而我们所学习的函数图像也有类似的对称现象,请看下面的函数图像。观察下面两组图像,它们是否也有对称性呢?xyO1-1f(x)=x2(1)(2)yxOx0-x0-xxf(-2)=(-2)2=4f(2)=4例如:函数f(x)=x2,如下:f(-1)=(-1)2=1f(1)=1f(-x)=(-x)2=x2f(-1)=f(1)f(-2)=f(2)f(-x)=f(x
2、)结论:当自变量x任取定义域中的一对相反数时,对应的函数值相等,即f(-x)=f(x)例如:对于函数f(x)=x3有f(-1)=(-1)3=-1f(1)=1f(-2)=(-2)3=-8f(2)=8f(-x)=(-x)3=-x3f(-1)=-f(1)f(-2)=-f(2)f(-x)=-f(x)-xx结论:当自变量任取定义域中的两个相反数时,对应的函数值也互为相反数,即f(-x)=-f(x)函数奇偶性的定义:偶函数定义:如果对于函数f(x)定义域内的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫偶函数.奇函数
3、定义:如果对于函数f(x)定义域内的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫奇函数.理解定义yox4-2思考?函数具有奇偶性的前提是什么?函数的定义域关于原点对称对于奇、偶函数定义的几点说明:(2)定义域关于原点对称是函数具有奇偶性的先决条件。(3)奇、偶函数定义的逆命题也成立,即:若函数f(x)为奇函数,则f(-x)=-f(x)成立。若函数f(x)为偶函数,则f(-x)=f(x)成立。(1)如果一个函数f(x)是奇函数或偶函数,那么我们就是说函数f(x)具有奇偶性。在线测试1、对于定义在R上的函
4、数f(x),下列判断是否正确?(1)若f(x)是偶函数,则f(-2)=f(2)()(2)若f(-2)=f(2),则函数f(x)是偶函数()(3)若f(-2)≠f(2),则函数f(x)不是偶函数()2、已知函数f(x)是偶函数,且f(3)=3,则f(-3)=()A、-3B、3C、0D、无法确定3、下列四个结论:偶函数的图像一定与y轴相交;奇函数的图像一定过原点;偶函数的图像关于y轴对称;奇函数y=f(x)(x)的图像必过(-a,f(a))表述正确的个数是A、1B、2C、3D、44、已知函数f(x)是奇函数,且f(3)=
5、3,则f(-3)等于()A、-3B、3C、0D、无法确定5、已知函数f(x)=x3,-5≤x<5,则下列结论正确的是()(A)函数f(x)是奇函数(B)函数f(x)的图像关于原点中心对称(C)函数定义域中由无数多个x,使得f(-x)=-f(x)(D)函数f(x)的定义域是关于原点对称的区域思考:如何判断一个函数的奇偶性呢?(1)图像法(2)定义法例1.根据下列函数图象,判断函数奇偶性.yxyxyxyxy典例详解xoy(a,f(a))(-a,f(-a))-aa奇函数的图象关于原点对称,反过来,如果一个函数的图象关于原点
6、对称,那么这个函数是奇函数.xoy-aa(a,f(a))(-a,f(-a))偶函数的图象关于y轴对称,反过来,如果一个函数的图象关于y轴对称,那么这个函数是偶函数.oyx例2已知函数y=f(x)是偶函数,它在y轴右边的图象如图,画出y=f(x)在y轴左边的图象。第一课时【互动探究案】例2、已知函数y=f(x)是偶函数,且知道x≥0是的图像,请作出另一半图象。yx练习例3.判断下列函数的奇偶性(1)f(x)=x3+x(2)f(x)=3x4+6x2+a解:定义域为R∵f(-x)=(-x)3+(-x)=-x3-x=-(x3
7、+x)即f(-x)=-f(x)∴f(x)为奇函数解:定义域为R∵f(-x)=3(-x)4+6(-x)2+a=3x4+6x2+a即f(-x)=f(x)∴f(x)为偶函数说明:用定义判断函数奇偶性的步骤:⑴先求出定义域,看定义域是否关于原点对称.⑵再判断f(-x)=-f(x)或f(-x)=f(x)是否成立.用定义法判断函数奇偶性解题步骤:(1)先确定函数定义域,并判断定义域是否关于原点对称;(2)求f(-x),找f(x)与f(-x)的关系;若f(-x)=f(x),则f(x)是偶函数;若f(-x)=-f(x),则f(x)是
8、奇函数.(3)作出结论.f(x)是偶函数或奇函数或非奇非偶函数或即是奇函数又是偶函数。给出函数判断定义域是否对称结论是f(-x)与f(x)否练习:说出下列函数的奇偶性:①f(x)=x4________③f(x)=x________④f(x)=x-2__________⑤f(x)=x5__________⑥f(x)=x-3____________