欢迎来到天天文库
浏览记录
ID:49986698
大小:184.00 KB
页数:4页
时间:2020-03-03
《2011—2012学年度第一学期高一数学学期调研新.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、2011—2012学年度第一学期高一数学学期调研2011.12.9命题人:章杰一.填空题(本大题共14小题,每小题5分,共70分)1.已知,,则.2.函数的最小正周期是___________.3.函数的值域为____________.4.设,则使得为奇函数,且在上单调递减的的值为.5.设向量则6.函数的值域是___________.7.将,,用排列 .8.已知函数则9.已知函数是偶函数,则10.已知定义在的减函数满足,且则不等式的解集为_______________.11.方程的实数根的个数为________
2、____.12.已知点分别是的边上的点,且若记则用表示为________________.13.已知函数其中为实数,若对恒成立,且则的单调递增区间为___________________.14.设若不等式对任意的恒成立,则实数的取值范围是________________.二.解答题(本大题题共6小题,共90分)15.设全集为,集合求集合16.如图,单位圆(半径为1的圆)的圆心为坐标原点,单位圆与轴的正半轴交于点,与钝角的终边交于点,设(1)用表示y的终边x(2)如果求点的坐标.(3)若求的值.17.(1)若求的值.(2)已知
3、求的值;18.已知函数,()的图象过点当时,的最大值为(1)求的解析式;(2)求的单调增区间、对称轴、对称中心;(3)的图象可由的图象经过怎样的变换得到.19.某自来水厂的蓄水池中有400吨水,每天零点开始向居民供水,同时以每小时60吨的速度向池中注水,小时内向居民供水总量为.(1)每天几点钟时,蓄水池中的存水量最少?(2)如果池中存水量不多于80吨,就会出现供水紧张现象,那么一天中会有几小时出现这种现象?20.已知满足,且时,(1)求在上的解析式;(2)证明:在上是减函数;(3)当为何值时,方程在上有解.
此文档下载收益归作者所有