时间序列:ARIMA模型.doc

时间序列:ARIMA模型.doc

ID:49977864

大小:192.00 KB

页数:12页

时间:2020-03-03

时间序列:ARIMA模型.doc_第1页
时间序列:ARIMA模型.doc_第2页
时间序列:ARIMA模型.doc_第3页
时间序列:ARIMA模型.doc_第4页
时间序列:ARIMA模型.doc_第5页
资源描述:

《时间序列:ARIMA模型.doc》由会员上传分享,免费在线阅读,更多相关内容在应用文档-天天文库

1、实验:建立ARIMA模型(综合性实验)实验题目:某城市连续14年的月度婴儿出生率数据如下表所示:26.66323.59826.93124.74025.80624.36424.47723.90123.17523.22721.67221.87021.43921.08923.70921.66921.75220.76123.47923.82423.10523.11021.75922.07321.93720.03523.59021.67222.22222.12323.95023.50422.23823.14221.05921.57321.54820.00022.42420.61521.76122.

2、87424.10423.74823.26222.90721.51922.02522.60420.89424.67723.67325.32023.58324.67124.45424.12224.25222.08422.99123.28723.04925.07624.03724.43024.66726.45125.61825.01425.11022.96423.98123.79822.27024.77522.64623.98824.73726.27625.81625.21025.19923.16224.70724.36422.64425.56524.06225.43124.63527.009

3、26.60626.26826.46225.24625.18024.65723.30426.98226.19927.21026.12226.70626.87826.15226.37924.71225.68824.99024.23926.72123.47524.76726.21928.36128.59927.91427.78425.69326.88126.21724.21827.91426.97528.52727.13928.98228.16928.05629.13626.29126.98726.58924.84827.54326.89628.87827.39028.06528.14129.

4、04828.48426.63427.73527.13224.92428.96326.58927.93128.00929.22928.75928.40527.94525.91226.61926.07625.28627.66025.95126.39825.56528.86530.00029.26129.01226.99227.897(1)选择适当模型拟和该序列的发展(2)使用拟合模型预测下一年度该城市月度婴儿出生率实验内容:给出实际问题的非平稳时间序列,要求学生利用R统计软件,对该序列进行分析,通过平稳性检验、差分运算、白噪声检验、拟合ARMA模型,建立ARIMA模型,在此基础上进行预测。实

5、验要求:处理数据,掌握非平稳时间序列的ARIMA建模方法,并根据具体的实验题目要求完成实验报告,并及时上传到给定的FTP和课程网站。实验步骤:第一步:编程建立R数据集;第二步:调用plot.ts程序对数据绘制时序图。第三步:从时序图中利用平稳时间序列的定义判断是否平稳?第四步:若不满足平稳性,则可利用差分运算是否能使序列平稳?重复第三步步骤第五步:根据Box.test纯随机检验结果,利用LB统计量和白噪声特性检验最后处理的时间序列是否为纯随机序列?第六步:在序列判断为平稳非白噪声序列后,求出该观察值序列的样本自相关系数(ACF)和样本偏自相关系数(PACF)的值,选择阶数适当的ARIMA

6、(p,d,q)模型进行拟合,并估计模型中未知参数的值。第七步:检验模型的有效性。如果拟合模型通不过检验,转向步骤6,重新选择模型再拟合。第八步:模型优化。如果拟合模型通过检验,仍然转向步骤6,充分考虑各种可能建立多个拟合模型,从所有通过检验的拟合模型中选择最优模型。第九步:利用最优拟合模型,预测下一年度该城市月度婴儿出生率。ex5.2=ts(scan("ex5.2.txt"),frequency=4)Read168itemsplot.ts(ex5.2)从图中看出序列一开始有下降趋势,后面有明显上升趋势,所以序列不平稳。d12ex5.2=diff(ex5.2,lag=12)acf(d12e

7、x5.2,48)plot(d12ex5.2)从上面的自相关图中可以看出改做滞后12期差分后为平稳。Box.test(d12ex5.2,lag=17,type="Ljung-Box")Box-Ljungtestdata:d12ex5.2X-squared=147.9254,df=17,p-value<2.2e-16P值小于0.05,可以认为是非白噪声序列。par(mfrow=c(2,1));acf(d12ex5.2,48);pacf(

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。