欢迎来到天天文库
浏览记录
ID:49941873
大小:2.03 MB
页数:37页
时间:2020-03-04
《应用相似三角形测高.ppt》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库。
1、欢迎各位老师和同学们乐山大佛新课导入世界上最高的树——红杉世界上最宽的河——亚马逊河世界上最高的楼——台北101大楼怎样测量这些非常高大物体的高度?例题古希腊数学家、天文学家泰勒斯利用数学的有关知识,测量了金字塔的高度。方法是:借太阳的光辉助我们解题,你想到吗?那么数学家用到的是什么原理呢?应用相似三角形测量复习知识点:1、相似三角形的识别方法:(1)________的两个三角形相似;(2)____的两个三角形相似;(3)________的两个三角形相似;(4)平行线分线段成比例:平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段________。平
2、行三角形相似成比例2、相似三角形的性质A字型8字型公共边角型双垂直型3、相似中常用基本图形:一线三等角型小试牛刀1、2、3、应用类型1:如图,为了估算河的宽度,我们可以在河对岸选定一个目标作为点A,再在河的这一边选点B和C,使AB⊥BC,然后,再选点E,使EC⊥BC,用视线确定BC和AE的交点D.测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离AB.ADCEB解:因为∠ADB=∠EDC,∠ABC=∠ECD=90°,所以△ABD∽△ECD,答:两岸间的大致距离为100米.(方法一)如果测得BD=120米,DC=60米,EC=50米,求两岸间的大致距离
3、AB.ADCEB1205060?(方法二)我们在河对岸选定一目标点A,在河的一边选点D和E,使DE⊥AD,然后选点B,作BC∥DE,与视线EA相交于点C。此时,测得DE,BC,BD,就可以求两岸间的大致距离AB了。ADEBC此时如果测得DE=120米,BC=60米,BD=50米,求两岸间的大致距离AB.请同学们互相交流并说一说你的做法1205060?方法归纳1测距的方法测量不能到达两点间的距离,常构造相似三角形求解(常用A字型和8字型相似)。ADCEBBOEA(F)D应用类型2DEA(F)BO2m3m201m解:太阳光是平行线,因此∠BAO=∠EDF又∠AOB=∠D
4、FE=90°∴△ABO∽△DEFBOEF=BO==134OAFDOA·EFFD=201×23一题多解方法1:CDEAB┐┐一题多解方法2:若点C处放置平面镜,测得ED=1.5mCD=2mCB=132m求AB的长。1.52132?物1高:物2高=影1长:影2长测高的方法测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成正比”的原理解决。(通常运用太阳光影子或者平面镜反射)方法归纳2同学们,应用三角形相似测量,有什么常用的-模型吗?你能画一画吗?⑵⑷(1)(3)应用三角形相似测量的常用模型有:某市为了打造森林城市,树立城市新地标,实现绿色、共享发展理念,在城南
5、建起了“望月阁”及环阁公园.小亮、小芳等同学想用一些测量工具和所学的几何知识测量“望月阁”的高度,来检验自己掌握知识和运用知识的能力.他们经过观察发现,观测点与“望月阁”底部间的距离不易测得,因此经过研究需要两次测量,于是他们首先用平面镜进行测量.方法如下:如图,小芳在小亮和“望月阁”之间的直线BM上平放一平面镜,在镜面上做了一个标记,这个标记在直线BM上的对应位置为点C,镜子不动,小亮看着镜面上的标记,他来回走动,走到点D时,看到“望月阁”顶端点A在镜面中的像与镜面上的标记重合,这时,测得小亮眼睛与地面的高度ED=1.5米,CD=2米,然后,在阳光下,他们用测影长
6、的方法进行了第二次测量,方法如下:如图,小亮从D点沿DM方向走了16米,到达“望月阁”影子的末端F点处,此时,测得小亮身高FG的影长FH=2.5米,FG=1.65米.如图,已知AB⊥BM,ED⊥BM,GF⊥BM,其中,测量时所使用的平面镜的厚度忽略不计,请你根据题中提供的相关信息,求出“望月阁”的高AB的长度.能力拓展1:能力拓展2:某同学测旗杆高度,他在某一时刻测得1m长的竹竿竖直时的影长为1.5m,同一时刻测量旗杆影长,因旗杆靠近一幢楼房,影子不全落在地面上,有一部分落在墙上,测得落在地面上的影长为9m,留在墙上的影长为2m,求旗杆高度(请尝试多种方法)C'BA
7、B'A'1.519?2ED解:∵AB∥A'B'BC∥B'C'∴∠ABC=∠A'B'C'又AC⊥CBA'C'⊥B'C'∴∠ACB=∠C'=90º∴△ABC∽△A'B'C'∴即∴AC=6AE=AC+CE=6+2=8即旗杆高8米方法1:AA'EDBCC'B'C'CBAB'A'1.519?2ED解:∵AB∥A'B'BC∥B'C'∴∠ABC=∠A'B'C'又AC⊥CBA'C'⊥B'C'∴∠ACB=∠C'=90º∴△ABC∽△A'B'C'∴即∴AC=6AE=AC+CE=6+2=8即旗杆高8米C'CBAB'A'1.5192ED方法2:过点D作DC∥BA交AE于C因太阳的光线是
此文档下载收益归作者所有