相交线与平行线复习课教学设计.doc

相交线与平行线复习课教学设计.doc

ID:49840760

大小:61.50 KB

页数:4页

时间:2020-03-04

相交线与平行线复习课教学设计.doc_第1页
相交线与平行线复习课教学设计.doc_第2页
相交线与平行线复习课教学设计.doc_第3页
相交线与平行线复习课教学设计.doc_第4页
资源描述:

《相交线与平行线复习课教学设计.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、相交线与平行线复习课教学设计教学目标1.经历对本章所学知识回顾与思考的过程,将本章内容条理化,系统化,梳理本章的知识结构.毛2.通过对知识的疏理,进一步加深对所学概念的理解,进一步熟悉和掌握几何语言,能用语言说明几何图形.3.使学生认识平面内两条直线的位置关系,在研究平行线时,能通过有关的角来判断直线平行和反映平行线的性质,理解平移的性质,能利用平移设计图案.重点、难点重点:复习正面内两条直线的相交和平行的位置关系,以及相交平行的综合应用.难点:垂直、平行的性质和判定的综合应用.教学过程一、复习

2、提问本章相交线、平行线中学习了哪些主要问题?教师根据学生的回答,逐步形成本章的知识结构图,使所学知识系统化.二、回顾与思考按知识网展开复习.二、基本概念、性质练习一1.如图1,直线AB、CD、EF相交于O,∠AOE的对顶角是,邻补角是,∠COF的对顶角是,邻补角是。2.如图2,∠BDE的同位角是,内错角是,同旁内角是;∠ADE与∠DGC是直线被所截成的角。3.如图3,三条直线a、b、c交于一点O,∠1=45°,∠2=60°,∠3=。4.如图4,∠1=105°,∠2=95°,∠3=105°,∠4=

3、。5.当两条直线相交所成的四个角中有一个角是直角时,就说这两条直线,它们的交点叫做。6.外一点到直线上各点连结的所有线段中,垂线段,这条垂线段的长度叫做。7.经过直线外一点,有且只有条直线与这条直线平行;过一点有且只有条直线与已知直线垂直。8.如果两条直线都和第三条直线平行,那么这两条直线。9.线被第三条直线所截,如果同位角相等或相等,相等,互补,那么这两条直线平行。10.两条平行直线被第三条直线所截,则相等,相等,互补。练习二、已知三角形ABC,(1)过A点画BC边上的垂线;(2)过C点画AB

4、边上的垂线。三、例题讲解例1.已知:如图5,AB∥CD,求证:∠B+∠D=∠BED。分析:可以考虑把∠BED变成两个角的和。如图5,过E点引一条直线EF∥AB,则有∠B=∠1,再设法证明∠D=∠2,需证EF∥CD,这可通过已知AB∥CD和EF∥AB得到。证明:过点E作EF∥AB,则∠B=∠1(两直线平行,内错角相等)。∵AB∥CD(已知),又∵EF∥AB(已作),∴EF∥CD(平行于同一直线的两条直线互相平行)。∴∠D=∠2(两直线平行,内错角相等)。又∵∠BED=∠1+∠2,∴∠BED=∠B+

5、∠D(等量代换)。变式1。已知:如图6,AB∥CD,求证:∠BED=360°-(∠B+∠D)。分析:此题与例1的区别在于E点的位置及结论。我们通常所说的∠BED都是指小于平角的角,如果把∠BED看成是大于平角的角,可以认为此题的结论与例1的结论是一致的。因此,我们模仿例1作辅助线,不难解决此题。证明:过点E作EF∥AB,则∠B+∠1=180°(两直线平行,同旁内角互补)。∵AB∥CD(已知),又∵EF∥AB(已作),∴EF∥CD(平行于同一直线的两条直线互相平行)。∴∠D+∠2=180°(两直线

6、平行,同旁内角互补)。∴∠B+∠1+∠D+∠2=180°+180°(等式的性质)。又∵∠BED=∠1+∠2,∴∠B+∠D+∠BED=360°(等量代换)。∴∠BED==360°-(∠B+∠D)(等式的性质)。变式2。已知:如图7,AB∥CD,求证:∠BED=∠D-∠B。分析:此题与例1的区别在于E点的位置不同,从而结论也不同。模仿例1与变式1作辅助线的方法,可以解决此题。证明:过点E作EF∥AB,则∠FEB=∠B(两直线平行,内错角相等)。∵AB∥CD(已知),又∵EF∥AB(已作),∴EF∥C

7、D(平行于同一直线的两条直线互相平行)。∴∠FED=∠D(两直线平行,内错角相等)。∵∠BED=∠FED-∠FEB,∴∠BED=∠D-∠B(等量代换)。变式3。已知:如图8,AB∥CD,求证:∠BED=∠B-∠D。分析:此题与变式2类似,只是∠B、∠D的大小发生了变化。证明:过点E作EF∥AB,则∠1+∠B=180°(两直线平行,同旁内角互补)。∵AB∥CD(已知),又∵EF∥AB(已作),∴EF∥CD(平行于同一直线的两条直线互相平行)。∴∠FED+∠D=180°(两直线平行,同旁内角互补)。

8、∴∠1+∠2+∠D=180°。∴∠1+∠2+∠D-(∠1+∠B)=180°-180°(等式的性质)。∴∠2=∠B-∠D(等式的性质)。即∠BED=∠B-∠D。例2.已知:如图9,AB∥CD,∠ABF=∠DCE。求证:∠BFE=∠FEC。证法一:过F点作FG∥AB,则∠ABF=∠1(两直线平行,内错角相等)。过E点作EH∥CD,则∠DCE=∠4(两直线平行,内错角相等)。∵FG∥AB(已作),AB∥CD(已知),∴FG∥CD(平行于同一直线的两条直线互相平行)。又∵EH∥CD(已知),∴FG∥EH

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。