浙江高考数学专题五函数与导数第3讲导数及其应用学案.doc

浙江高考数学专题五函数与导数第3讲导数及其应用学案.doc

ID:49839723

大小:341.50 KB

页数:22页

时间:2020-03-04

浙江高考数学专题五函数与导数第3讲导数及其应用学案.doc_第1页
浙江高考数学专题五函数与导数第3讲导数及其应用学案.doc_第2页
浙江高考数学专题五函数与导数第3讲导数及其应用学案.doc_第3页
浙江高考数学专题五函数与导数第3讲导数及其应用学案.doc_第4页
浙江高考数学专题五函数与导数第3讲导数及其应用学案.doc_第5页
资源描述:

《浙江高考数学专题五函数与导数第3讲导数及其应用学案.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、第3讲 导数及其应用[考情考向分析] 1.导数的意义和运算是导数应用的基础,是高考的一个热点.2.利用导数解决函数的单调性与极值(最值)问题是高考的常见题型.热点一 导数的几何意义1.函数f(x)在x0处的导数是曲线f(x)在点P(x0,f(x0))处的切线的斜率,曲线f(x)在点P处的切线的斜率k=f′(x0),相应的切线方程为y-f(x0)=f′(x0)(x-x0).2.求曲线的切线要注意“过点P的切线”与“在点P处的切线”的不同.例1 (1)(2018·全国Ⅰ)设函数f(x)=x3+(a-1)x2+ax,若f(x)为奇函数,则曲线y=f(x)在点(0,0

2、)处的切线方程为(  )A.y=-2xB.y=-xC.y=2xD.y=x答案 D解析 方法一 ∵f(x)=x3+(a-1)x2+ax,∴f′(x)=3x2+2(a-1)x+a.又f(x)为奇函数,∴f(-x)=-f(x)恒成立,即-x3+(a-1)x2-ax=-x3-(a-1)x2-ax恒成立,∴a=1,∴f′(x)=3x2+1,∴f′(0)=1,∴曲线y=f(x)在点(0,0)处的切线方程为y=x.22故选D.方法二 ∵f(x)=x3+(a-1)x2+ax为奇函数,∴f′(x)=3x2+2(a-1)x+a为偶函数,∴a=1,即f′(x)=3x2+1,∴f′(

3、0)=1,∴曲线y=f(x)在点(0,0)处的切线方程为y=x.故选D.(2)若直线y=kx+b是曲线y=lnx+1的切线,也是曲线y=ln(x+2)的切线,则实数b=________.答案 ln2解析 设直线y=kx+b与曲线y=lnx+1和曲线y=ln(x+2)的切点分别为(x1,lnx1+1),(x2,ln(x2+2)).∵直线y=kx+b是曲线y=lnx+1的切线,也是曲线y=ln(x+2)的切线,∴=,即x1-x2=2.∴切线方程为y-(lnx1+1)=(x-x1),即为y=+lnx1或y-ln(x2+2)=(x-x2),即为y=++lnx1,∴=0

4、,则x1=2,∴b=ln2.思维升华 (1)求曲线的切线要注意“过点P的切线”与“在点P处的切线”的差异,过点P的切线中,点P不一定是切点,点P也不一定在已知曲线上,而在点P处的切线,必以点P为切点.(2)利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解.跟踪演练1 (1)(2018·全国Ⅱ)曲线y=2ln(x+1)在点(0,0)处的切线方程为________.答案 2x-y=0解析 ∵y=2ln(x+1),∴y′=.令x=

5、0,得y′=2,由切线的几何意义得切线斜率为2,又切线过点(0,0),22∴切线方程为y=2x,即2x-y=0.(2)若函数f(x)=lnx(x>0)与函数g(x)=x2+2x+a(x<0)有公切线,则实数a的取值范围是(  )A.B.(-1,+∞)C.(1,+∞)D.(-ln2,+∞)答案 A解析 设公切线与函数f(x)=lnx切于点A(x1,lnx1)(x1>0),则切线方程为y-lnx1=(x-x1).设公切线与函数g(x)=x2+2x+a切于点B(x2,x+2x2+a)(x2<0),则切线方程为y-(x+2x2+a)=2(x2+1)(x-x2),∴∵x

6、2<0h(2)=-ln2-1=ln,∴a∈.热点二 利用导数研究函数的单调性1.f′(x)>0是f(x)为增函数的充分不必要条件,如函数f(x)=x3在(-∞,+∞)上单调递增,但f′(x)≥0.2.f′(x)≥0是f(x)为增函数的必要不充分条件,如函数在某个区间内恒有f′(x)=0时,则f(x)为常函数,函数不具有单调性.例2 已知函数

7、f(x)=2ex-kx-2.22(1)讨论函数f(x)在(0,+∞)内的单调性;(2)若存在正数m,对于任意的x∈(0,m),不等式

8、f(x)

9、>2x恒成立,求正实数k的取值范围.解 (1)由题意得f′(x)=2ex-k,x∈(0,+∞),因为x>0,所以2ex>2.当k≤2时,f′(x)>0,此时f(x)在(0,+∞)内单调递增.当k>2时,由f′(x)>0得x>ln,此时f(x)单调递增;由f′(x)<0得02时,f(x)在内单调递减,在内单调递增.(2)①当0

10、≤2时,由(1)可得f(x)在(0,+

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。