专题17:动态几何之面积问题探讨.doc

专题17:动态几何之面积问题探讨.doc

ID:49754264

大小:3.28 MB

页数:71页

时间:2020-03-04

专题17:动态几何之面积问题探讨.doc_第1页
专题17:动态几何之面积问题探讨.doc_第2页
专题17:动态几何之面积问题探讨.doc_第3页
专题17:动态几何之面积问题探讨.doc_第4页
专题17:动态几何之面积问题探讨.doc_第5页
资源描述:

《专题17:动态几何之面积问题探讨.doc》由会员上传分享,免费在线阅读,更多相关内容在教育资源-天天文库

1、【2013年中考攻略】专题17:动态几何之面积问题探讨动态题是近年来中考的的一个热点问题,动态包括点动、线动和面动三大类,解这类题目要“以静制动”,即把动态问题,变为静态问题来解,而静态问题又是动态问题的特殊情况。常见的题型包括最值问题、面积问题、和差问题、定值问题和图形存在问题等。前面我们已经对最值问题进行了探讨,本专题对面积问题行探讨。结合2011年和2012年全国各地中考的实例,我们从四方面进行动态几何之面积问题的探讨:(1)静态面积问题;(2)点动形成的动态面积问题;(3)线动形成的动态面积问题;(4)面动形成的动态面积问题。一、静态面积问题:典型例题:例1:

2、(2012山西省2分)如图是某公园的一角,∠AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD∥OB,则图中休闲区(阴影部分)的面积是【】 A.米2B.米2C.米2D.米2【答案】C。【考点】扇形面积的计算,勾股定理,锐角三角函数定义,特殊角的三角函数值。【分析】连接OD,则。∵弧AB的半径OA长是6米,C是OA的中点,∴OC=OA=×6=3。∵∠AOB=90°,CD∥OB,∴CD⊥OA。在Rt△OCD中,∵OD=6,OC=3,∴。又∵,∴∠DOC=60°。∴(米2)。故选C。71例2:(2012湖北恩施3分)如图,菱形ABCD和菱形ECG

3、F的边长分别为2和3,∠A=120°,则图中阴影部分的面积是【】A.B.2C.3D.例3:(2012湖北随州4分)如图,直线l与反比例函数的图象在第一象限内交于A、B两点,交x轴的正半轴于C点,若AB:BC=(m一l):1(m>l)则△OAB的面积(用m表示)为【】71A.B.C.D.【答案】B。【考点】反比例函数的应用,曲线上点的坐标与方程式关系,相似三角形的判定和性质,代数式化简。【分析】如图,过点A作AD⊥OC于点D,过点B作BE⊥OC于点E,设A(xA,yA),B(xB,yB),C(c¸0)。∵AB:BC=(m一l):1(m>l),∴AC:BC=m:1。又∵△

4、ADC∽△BEC,∴AD:BE=DC:EC=AC:BC=m:1。又∵AD=yA,BE=yB,DC=c-xA,EC=c-xB,∴yA:yB=m:1,即yA=myB。∵直线l与反比例函数的图象在第一象限内交于A、B两点,∴,。∴,。将又由AC:BC=m:1得(c-xA):(c-xB)=m:1,即,解得。∴。故选B。例4:(2012贵州贵阳12分)如果一条直线把一个平面图形的面积分成相等的两部分,我们把这条直线称为这个平面图形的一条面积等分线.(1)三角形有  条面积等分线,平行四边形有  条面积等分线;(2)如图①所示,在矩形中剪去一个小正方形,请画出这个图形的一条面积等

5、分线;(3)如图②,四边形ABCD中,AB与CD不平行,AB≠CD,且S△ABC<S△ACD,过点A画出四边形ABCD的面积等分线,并写出理由.71【答案】解:(1)6;无数。(2)这个图形的一条面积等分线如图:连接2个矩形的对角线的交点的直线即把这个图形分成2个相等的部分.即OO′为这个图形的一条面积等分线。(3)四边形ABCD的面积等分线如图所示:理由如下:过点B作BE∥AC交DC的延长线于点E,连接AE。∵BE∥AC,∴△ABC和△AEC的公共边AC上的高也相等,∴S△ABC=S△AEC。∴。∵S△ACD>S△ABC,∴面积等分线必与CD相交,取DE中点F,则直

6、线AF即为要求作的四边形ABCD的面积等分线。【考点】面积及等积变换,平行线之间的距离,三角形的面积,平行四边形的性质,矩形的性质。【分析】(1)读懂面积等分线的定义,不难得出:三角形的面积等分线是三角形的中线所在的直线;过两条对角线的交点的直线都可以把平行四边形的面积分成2个相等的部分;从而三角形有3条面积等分线,平行四边形有无数条面积等分线。(2)由(1)知,矩形的一条对角线所在的直线就是矩形的一条面积等分线;71(3)过点B作BE∥AC交DC的延长线于点E,连接AE.根据△ABC和△AEC的公共边AC上的高也相等推知S△ABC=S△AEC;由“割补法”可以求得。

7、 例5:(2012贵州毕节3分)如图,在正方形ABCD中,以A为顶点作等边△AEF,交BC边于E,交DC边于F;又以A为圆心,AE的长为半径作。若△AEF的边长为2,则阴影部分的面积约是【】(参考数据:,π取3.14)A.0.64B.1.64C.1.68D.0.36【答案】A。【考点】正方形和等边三角形的性质,勾股定理,扇形和三角形面积。【分析】由图知,。因此,由已知,根据正方形、等边三角形的性质和勾股定理,可得等边△AEF的边长为2,高为;Rt△AEF的两直角边长为;扇形AEF的半径为2圆心角为600。∴。故选A。例6:(2012山东德州3分)如图

当前文档最多预览五页,下载文档查看全文

此文档下载收益归作者所有

当前文档最多预览五页,下载文档查看全文
温馨提示:
1. 部分包含数学公式或PPT动画的文件,查看预览时可能会显示错乱或异常,文件下载后无此问题,请放心下载。
2. 本文档由用户上传,版权归属用户,天天文库负责整理代发布。如果您对本文档版权有争议请及时联系客服。
3. 下载前请仔细阅读文档内容,确认文档内容符合您的需求后进行下载,若出现内容与标题不符可向本站投诉处理。
4. 下载文档时可能由于网络波动等原因无法下载或下载错误,付费完成后未能成功下载的用户请联系客服处理。